The anterior talofibular ligament and the calcaneofibular ligament are the most commonly injured ankle ligaments. This study aimed to investigate if the double fascicular anterior talofibular ligament and the calcaneofibular ligament are associated with the presence of interconnections between those two ligaments and connections with non-ligamentous structures. A retrospective re-evaluation of 198 magnetic resonance imaging examinations of the ankle joint was conducted. The correlation between the double fascicular anterior talofibular ligament and calcaneofibular ligament and connections with the superior peroneal retinaculum, the peroneal tendon sheath, the tibiofibular ligaments, and the inferior extensor retinaculum was studied. The relationships between the anterior talofibular ligament’s and the calcaneofibular ligament’s diameters with the presence of connections were investigated. Most of the connections were visible in a group of double fascicular ligaments. Most often, one was between the anterior talofibular ligament and calcaneofibular ligament (74.7%). Statistically significant differences between groups of single and double fascicular ligaments were visible in groups of connections between the anterior talofibular ligament and the peroneal tendon sheath (p < 0.001) as well as the calcaneofibular ligament and the posterior tibiofibular ligament (p < 0.05), superior peroneal retinaculum (p < 0.001), and peroneal tendon sheath (p < 0.001). Differences between the thickness of the anterior talofibular ligament and the calcaneofibular ligament (p < 0.001), the diameter of the fibular insertion of the anterior talofibular ligament (p < 0.001), the diameter of calcaneal attachment of the calcaneofibular ligament (p < 0.05), and tibiocalcaneal angle (p < 0.01) were statistically significant. The presence of the double fascicular anterior talofibular ligament and the calcaneofibular ligament fascicles correlate with connections to adjacent structures.
This comparative study aimed to investigate how tendinopathy-related lesions change correlations in the dimensions of the Achilles tendon. Our experimental group included 74 patients. The mean age was 52.9 ± 10.4 years. The control group included 81 patients with a mean age was 35.2 ± 13.6 years, p < .001. The most significant difference in correlation was the thickness of the tendon and the midportion's width, which was more significant in the tendinopathy (r = .49 vs. r = .01, p < .001). The correlation was positive between width and length of the insertion but negative in normal tendons (r = .21 vs. r = − .23, p < .001). The correlation was between the midportions width in tendinopathy and the tendon's length but negative in the normal tendon (r = .16 vs. r = − .23, p < .001). The average thickness of the midportion in tendinopathy was 11.2 ± 3.3 mm, and 4.9 ± 0.5 mm in the control group, p < .001. The average width of the midportion and insertion was more extensive in the experimental group, 17.2 ± 3.1 mm vs. 14.7 ± 1.8 mm for the midportion and 31.0 ± 3.9 mm vs. 25.7 ± 3.0 mm for insertion, respectively, p < .001. The tendon's average length was longer in tendinopathy (83.5 ± 19.3 mm vs. 61.5 ± 14.4 mm, p < .001). The dimensions correlations in normal Achilles tendon and tendinopathic tendon differ significantly.
Purpose This study aimed to examine the anatomic variations at the level of the distal soleus musculotendinous junction and the possible association between the length of the free tendon and the development of symptomatic Achilles tendinopathy. Methods We retrospectively assessed 72 ankle MRI studies with findings of Achilles tendinopathy (study group, 26 females/46 males, mean age 52.6 ± 10.5 years, 30 right/42 left) and 72 ankle MRI studies with normal Achilles tendon (control group, 32 females/40 males, mean age 35.7 ± 13.7 years, 42 right/30 left side). We measured the distance from the lowest outline of the soleus myotendinous junction to the proximal outline of the Achilles tendon insertion (length of the free tendon, diameter a) and to the distal outline of the insertion (distance B). We also measured the maximum thickness of the free tendon (diameter c) and the distance between the levels of maximum thickness to the proximal outline of the Achilles tendon insertion (distance D). All measurements were assessed twice. Statistical analysis was performed using independent t test. Results Distances A and B were significantly larger in tendinopathic tendons (59.7 and 83.4 mm, respectively) than normal Achilles tendons (38.5 and 60.8 mm, respectively) (p = 0.001). Mean distance C was larger in tendinopathic than normal tendons (11.2 versus 4.9 mm). Distances C and D were significantly larger in males than females. There was no significant difference in the measurements between sides. Conclusion There is wide anatomical variation in the length of the free Achilles tendon. Tendinopathy may be associated with the thicker free part of the Achilles tendon. The anatomical variant of the high soleus musculotendinous junction resulting in a longer free Achilles tendon may be a predisposing factor to the development of tendinopathy.
This study aimed to prove the hypothesis that the medial structures of the ankle are interconnected through the flexor retinaculum’s projections. We conducted a retrospective re-evaluation of 132 MRI examinations of the ankle joint from 57 females and 75 males with an age range of 18–65 and a mean age of 35 years. The correlation between the presence of connections between the flexor retinaculum and the deltoid ligament, the spring ligament, the inferior extensor retinaculum, the paratenon, the fibulotalocalcaneal ligament, the fascia covering the abductor hallucis, and the flexor fibrous sheath were studied. The most common connections of the flexor retinaculum were to the deltoid ligament (97%), the fibulotalocalcaneal ligament (84.1%), and the flexor fibrous sheath (83.3%). Interconnection between the flexor retinaculum and the deltoid ligament correlated with the presence of connections between the flexor retinaculum and the inferior extensor retinaculum, the paratenon, and the spring ligament. Side difference was noticed in connections to the flexor fibrous sheath, the deltoid ligament, the fascia on the abductor hallucis, and the paratenon (p < 0.05). The flexor retinaculum formed a more complex anatomical unit with adjacent structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.