Descending pain-modulatory systems, either inhibitory or facilitatory, play a critical role in both acute and chronic pain. Compared with serotonin and norepinephrine, little is known about the function of dopamine (DA). We characterized the anatomical organization of descending DA pathways from hypothalamic A11 nuclei to the medullary dorsal horn (MDH) and investigated their role in trigeminal pain. Immunochemistry analysis reveals that A11 is a heterogeneous nucleus that contains at least 3 neuronal phenotypes, DA, GABA, and alpha-calcitonin gene-related peptide (α-CGRP) neurons, exhibiting different distribution patterns, with a large proportion of GABA relative to DA neurons. Using fluorogold, we show that descending pathways from A11 nuclei to MDH originate mainly from DA neurons and are bilateral. Facial nociceptive stimulation elevates Fos immunoreactivity in both ipsilateral and contralateral A11 nuclei. Fos immunoreactivity is not detected in DA or projecting neurons but, interestingly, in GABA neurons. Finally, inactivating A11, using muscimol, or partially lesioning A11 DA neurons, using the neurotoxin 6-hydroxydopamine, inhibits trigeminal pain behavior. These results show that A11 nuclei are involved in pain processing. Interestingly, however, pain seems to activate GABAergic neurons within A11 nuclei, which suggests that pain inhibits rather than activates descending DA controls. We show that such inhibition produces an antinociceptive effect. Pain-induced inhibition of descending DA controls and the resulting reduced DA concentration within the dorsal horn may inhibit the transfer of nociceptive information to higher brain centers through preferential activation of dorsal horn D2-like receptors.
With over 30% of current medications targeting this family of proteins, G-protein–coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography–tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.