This study evaluates the unconventional reservoir geomechanical characteristics of the Lower Turonian Abu Roash-F (AR-F) carbonates from the Abu Gharadig field, onshore Egypt, which has not been attempted before. The interval dominantly consists of planktic foraminifera and micrite matrix. The AR-F marine carbonate is organic-rich (0.59–3.57 wt% total organic carbon), thermally mature (435–441°C Tmax) and falls within the oil generation window. The studied interval is very tight with up to 2.6% porosity and 0.0016–0.0033 mD permeability with the wireline log-based brittleness index ranging between 0.39–0.72 which indicates a less brittle to brittle nature. AR-F exhibits a hydrostatic pore pressure gradient with minimum horizontal stress (Shmin) varying between 0.66–0.76 PSI/ft. Safe wellbore trajectory analysis was performed for deviated and horizontal wells to infer the mud pressure gradients required to avoid wellbore instabilities. Based on the inferred in-stress magnitudes and considering an NNE regional maximum horizontal stress orientation, none of the fractures are found to be critically stressed at present day. To produce from the AR-F, hydraulic fracturing is necessary, and we infer a minimum pore pressure increment threshold of 1390 PSI by fluid injection to reactivate the vertical fractures parallel to regional minimum horizontal stress azimuth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.