Electroencephalography (EEG) signals were analyzed in many research applications as a channel of communication between humans and computers. EEG signals associated with imagined fists and feet movements were filtered and processed using wavelet transform analysis for feature extraction. The proposed work used Neural Networks (NNs) as a classifier that enables the classification of imagined movements into either fists or feet. Wavelet families such as Daubechies, Symlets, and Coiflets wavelets were used to analyze the extracted events and then different feature extraction measures were calculated for three detail levels of the wavelet coefficients. Intensive NN training and testing experiments were carried out and different network configurations were compared. The optimum classification performance of 89.11% was achieved with a NN classifier of 20 hidden layers while using the Mean Absolute Value (MAV) of the Coiflets wavelet coefficients as inputs to NN. The proposed system showed a good performance that enables controlling computer applications via imagined fists and feet movements.
Abstract-In this paper, we propose an automated computer platform for the purpose of classifying Electroencephalography (EEG) signals associated with left and right hand movements using a hybrid system that uses advanced feature extraction techniques and machine learning algorithms. It is known that EEG represents the brain activity by the electrical voltage fluctuations along the scalp, and Brain-Computer Interface (BCI) is a device that enables the use of the brain's neural activity to communicate with others or to control machines, artificial limbs, or robots without direct physical movements. In our research work, we aspired to find the best feature extraction method that enables the differentiation between left and right executed fist movements through various classification algorithms. The EEG dataset used in this research was created and contributed to PhysioNet by the developers of the BCI2000 instrumentation system. Data was preprocessed using the EEGLAB MATLAB toolbox and artifacts removal was done using AAR. Data was epoched on the basis of Event-Related (De) Synchronization (ERD/ERS) and movement-related cortical potentials (MRCP) features. Mu/beta rhythms were isolated for the ERD/ERS analysis and delta rhythms were isolated for the MRCP analysis. The Independent Component Analysis (ICA) spatial filter was applied on related channels for noise reduction and isolation of both artifactually and neutrally generated EEG sources. The final feature vector included the ERD, ERS, and MRCP features in addition to the mean, power and energy of the activations of the resulting Independent Components (ICs) of the epoched feature datasets. The datasets were inputted into two machinelearning algorithms: Neural Networks (NNs) and Support Vector Machines (SVMs). Intensive experiments were carried out and optimum classification performances of 89.8 and 97.1 were obtained using NN and SVM, respectively. This research shows that this method of feature extraction holds some promise for the classification of various pairs of motor movements, which can be used in a BCI context to mentally control a computer or machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.