Ensemble classification is a data mining approach that utilizes a number of classifiers that work together in order to identify the class label for unlabeled instances. Random forest (RF) is an ensemble classification approach that has proved its high accuracy and superiority. With one common goal in mind, RF has recently received considerable attention from the research community to further boost its performance. In this paper, we look at developments of RF from birth to present. The main aim is to describe the research done to date and also identify potential and future developments to RF. Our approach in this review paper is to take a historical view on the development of this notably successful classification technique. We start with developments that were found before Breiman's introduction of the technique in 2001, by which RF has borrowed some of its components. We then delve into dealing with the main technique proposed by Breiman. A number of developments to enhance the original technique are then presented and summarized. Successful applications that utilized RF are discussed, before a discussion of possible directions of research is finally given.
Random Forest (RF) is an ensemble classification technique that was developed by Breiman over a decade ago. Compared with other ensemble techniques, it has proved its accuracy and superiority. Many researchers, however, believe that there is still room for enhancing and improving its performance in terms of predictive accuracy. This explains why, over the past decade, there have been many extensions of RF where each extension employed a variety of techniques and strategies to improve certain aspect(s) of RF. Since it has been proven empirically that ensembles tend to yield better results when there is a significant diversity among the constituent models, the objective of this paper is twofolds. First, it investigates how an unsupervised learning technique, namely, Local Outlier Factor (LOF) can be used to identify diverse trees in the RF. Second, trees with the highest LOF scores are then used to produce an extension of RF termed LOFB-DRF that is much smaller in size than RF, and yet performs at least as good as RF, but mostly exhibits higher performance in terms of accuracy. The latter refers to a known technique called ensemble pruning. Experimental results on 10 real datasets prove the superiority of our proposed extension over the traditional RF. Unprecedented pruning levels reaching as high as 99% have been achieved at the time of boosting the predictive accuracy of the ensemble. The notably high pruning level makes the technique a good candidate for real-time applications.
In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with limited memory and processing power. For real-time health care analytics applications, particularly the ones that run on mobile devices, such traits (high accuracy and fast prediction) are highly desirable. In this paper, we propose to use an ensemble regression technique based on CLUB-DRF, which is a pruned Random Forest that possesses these features. The speed and accuracy of the method have been demonstrated by an experimental study on three medical data sets of three different diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.