Spatial disorientation and visual channel saturation are defined as critical situations encountered by military pilots. Such subjects are interesting research areas likely to create innovative systems able to surmount obstacles of this kind. The integration of new stimulation techniques (sensory substitute, adjunct for visual and audio feedback) may be considered to make the visual channel better. This contribution may help in integrating tactile stimulation to improve or substitute the visual channel. It may also help to better interpret the spatial disorientation awareness signals and the vestibulo-ocular response limitations. The innovation of the proposed approach translates in: (i) the development of the PI-Inverse dynamics controller to provide a time delay reduction of the low cost tactile actuator, and thus, high-performance tactile system; (ii) an approach based on fuzzy logic controller (FLC) is being used in order to translate the turn rate angle, the flight path climb angle and the warning messages into tactile signal features instead of a conventional approach based on direct coding of the pitch and bank angles; and (iii) the consideration of the flight envelope. The fuzzy set translation of flight parameters into tactile signals is also a pragmatic and useful way to design the system.
In this paper, we present a new force-feedback side-stick which has been developed and integrated into a research flight simulator. The developed 2 Degrees of Freedom (DOF) force-feedback joystick, as a kind of haptic device, provides two-way communication in both position and force, and allows users to interact with the simulation system. It has been designed by considering the main factors in designing a general use force-feedback device. Thus, the design must allow the restitution of aerodynamic forces onto the hand of the pilot. This is an important feature, which gives the pilot the ‘natural feel’ of traditional mechanical aircraft control. In order to provide the force feedback to enhance the realism of the simulation, we added the necessary software using Commercial-Off-the-Shelf (COTS) solutions (Microsoft Flight Simulator Software (MSFS)) and built-in data structure and methods. Thus, the main contribution of this paper concerns the design and implementation of an automatic controller based on fuzzy logic systems. It is not simply designing a force-feedback stick for flight simulation: we proposed a novel control principles and more importantly completely new approach to compute in real-time force feedback on the stick based on pilot knowledge that avoids the use of complex aerodynamics equations with unknown parameters. To our best knowledge, this work is the first to propose the integration of fuzzy logic force controller in flight simulation for creating force feedback. Results using the overall simulation are presented and evaluated and interesting sensations have been recorded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.