This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications.
This paper presents a hardware implementation of flexible and low-cost attitude determination and control system (ADCS) for two-axis-stabilized CubeSat. As small satellite missions are increasing, the CubeSat requires precise ADCS with attitude drift adjustment. This attitude drift if not properly compensated, will cause a slow attitude information loss as the error in attitude rises between the actual and estimated signals. The proposed ADCS comprises two steps; the attitude determination which estimates the current CubeSat's attitude and a novel simplified intelligent proportional-integral control algorithm that accurately adjusts the attitude. The control algorithm is based on the multi degree-of-freedom controller concept and has no controller gains parameters. The proposed ADCS employs sun sensor, magnetometer, and a micro-electro-mechanical gyroscope sensor to correct the attitude drift by offering a comparative attitude that is utilized for updating the estimated attitude delivered to the Kalman filter for determining the CubeSat's attitude and angular velocity. The ADCS model verification and validation are accomplished via Matlab/Simulink and hardware implementation. A comparison with other ADCS techniques is presented. The ADCS simulated model demonstrates precision results with error of less than 0.1°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.