Purpose Financial distress is a socially and economically important problem that affects companies the world over. Having the power to better understand – and hence aid businesses from failing, has the potential to save not only the company, but also potentially prevent economies from sustained downturn. Although Islamic banks constitute a fraction of total banking assets, their importance have been substantially increasing, as their asset growth rate has surpassed that of conventional banks in recent years. The paper aims to discuss these issues. Design/methodology/approach This paper uses a data set comprising 101 international publicly listed Islamic banks to work on advancing financial distress prediction (FDP) by utilising cutting-edge stochastic models, namely decision trees, stochastic gradient boosting and random forests. The most important variables pertaining to forecasting corporate failure are determined from an initial set of 18 variables. Findings The results indicate that the “Working Capital/Total Assets” ratio is the most crucial variable relating to forecasting financial distress using both the traditional “Altman Z-Score” and the “Altman Z-Score for Service Firms” methods. However, using the “Standardised Profits” method, the “Return on Revenue” ratio was found to be the most important variable. This provides empirical evidence to support the recommendations made by Basel Accords for assessing a bank’s capital risks, specifically in relation to the application to Islamic banking. Originality/value These findings provide a valuable addition to the limited literature surrounding Islamic banking in general, and FDP pertaining to Islamic banking in particular, by showcasing the most pertinent variables in forecasting financial distress so that appropriate proactive actions can be taken.
Purpose The prevention of fraudulent activities, particularly within a financial context, is of paramount significance in all spheres, as it not only impacts the sustainability of corporate entities but also has the potential to have a broader economy-wide impact. This paper aims to focus on dual implications associated with financial distress, the first being associated with the temptation to launder funds due to financial distress, and the second being the potential for illicit activities, such as fraud, money laundering or terror financing, to give rise to financial distress. Design/methodology/approach The paper examines the literature on financial distress and uses theories of financial crime to establish a link between financial distress and financial crime. Findings In recent years, there has been a surge in corporate financial distress, particularly in the aftermath of concurrent crises such as the COVID-19 pandemic and the Russia–Ukraine war. Through a comprehensive examination of literature pertaining to financial distress and financial crime, this study identifies a proclivity towards fraudulent conduct arising from instances of financial distress. Moreover, the engagement in such illicit activities subsequently exacerbates the financial distress. An analysis of the relationship between financial crime and financial distress reveals the existence of a vicious cycle between the two. Originality/value The results of this study have the potential to advance understanding of the relationship between financial distress and financial crime, which has been previously underexplored.
Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that 'Property, Plant, & Equipment (PPE) turnover', 'Invested Capital Turnover', and 'Price over Earnings Ratio (PER)' were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.
Aim/Purpose: This paper aims to empirically quantify the financial distress caused by the COVID-19 pandemic on companies listed on Amman Stock Exchange (ASE). The paper also aims to identify the most important predictors of financial distress pre- and mid-pandemic. Background: The COVID-19 pandemic has had a huge toll, not only on human lives but also on many businesses. This provided the impetus to assess the impact of the pandemic on the financial status of Jordanian companies. Methodology: The initial sample comprised 165 companies, which was cleansed and reduced to 84 companies as per data availability. Financial data pertaining to the 84 companies were collected over a two-year period, 2019 and 2020, to empirically quantify the impact of the pandemic on companies in the dataset. Two approaches were employed. The first approach involved using Multiple Discriminant Analysis (MDA) based on Altman’s (1968) model to obtain the Z-score of each company over the investigation period. The second approach involved developing models using Artificial Neural Networks (ANNs) with 15 standard financial ratios to find out the most important variables in predicting financial distress and create an accurate Financial Distress Prediction (FDP) model. Contribution: This research contributes by providing a better understanding of how financial distress predictors perform during dynamic and risky times. The research confirmed that in spite of the negative impact of COVID-19 on the financial health of companies, the main predictors of financial distress remained relatively steadfast. This indicates that standard financial distress predictors can be regarded as being impervious to extraneous financial and/or health calamities. Findings: Results using MDA indicated that more than 63% of companies in the dataset have a lower Z-score in 2020 when compared to 2019. There was also an 8% increase in distressed companies in 2020, and around 6% of companies came to be no longer healthy. As for the models built using ANNs, results show that the most important variable in predicting financial distress is the Return on Capital. The predictive accuracy for the 2019 and 2020 models measured using the area under the Receiver Operating Characteristic (ROC) graph was 87.5% and 97.6%, respectively. Recommendations for Practitioners: Decision makers and top management are encouraged to focus on the identified highly liquid ratios to make thoughtful decisions and initiate preemptive actions to avoid organizational failure. Recommendation for Researchers: This research can be considered a stepping stone to investigating the impact of COVID-19 on the financial status of companies. Researchers are recommended to replicate the methods used in this research across various business sectors to understand the financial dynamics of companies during uncertain times. Impact on Society: Stakeholders in Jordanian-listed companies should concentrate on the list of most important predictors of financial distress as presented in this study. Future Research: Future research may focus on expanding the scope of this study by including other geographical locations to check for the generalisability of the results. Future research may also include post-COVID-19 data to check for changes in results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.