Problem statement: The problem in cryptanalysis can be described as an unknown and the neural networks are ideal tools for black-box system identification. In this study, a mathematical black-box model is developed and system identification techniques are combined with adaptive system techniques, to construct the Neuro-Identifier. Approach: The Neuro-Identifier was discussed as a black-box model to attack the target cipher systems. Results: In this study this model is a new addition in cryptography that presented the methods of block (SDES) crypto systems discussed. The constructing of Neuro-Identifier mode achieved two objectives: The first one was to construct emulator of Neuro-model for the target cipher system, while the second was to (cryptanalysis) determine the key from given plaintext-ciphertext pair. Conclusion: Present the idea of the equivalent cipher system, which is identical 100% to the unknown system and that means that an unknown hardware, or software cipher system could be reconstructed without known the internal circuitry or algorithm of it
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.