Viruses pose a serious threat to the sustainable production of economically important crops around the world. In the past 20 years, potato virus Y (PVY) emerged as a relatively new and very serious problem in potatoes, even though it is the oldest known plant virus. Multiple strains of the virus cause various symptoms on the leaves and tubers of potatoes, resulting in yield reduction and poor-quality tubers. Consequently, it would be very interesting to learn what causes systemic PVY resistance in plants. Natural compounds such as chitosan (CHT) and phosphorus have been developed as alternatives to chemical pesticides to manage crop diseases in recent years. In the current study, potato leaves were foliar-sprayed with chitosan and phosphorus to assess their ability to induce PVY resistance. Compared to untreated plants, the findings demonstrated a significant decrease in disease severity and PVY accumulation in plants for which CHT and P were applied. Every treatment includes significantly increased growth parameters, chlorophyll content, photosynthetic characteristics, osmoprotectants (glycine betaine, proline, and soluble sugar), non-enzymatic antioxidants (glutathione, phenols, and ascorbic acid), enzymatic antioxidants (peroxidase, superoxide dismutase, lipoxygenase, glutathione reductase, catalase, β-1,3 glucanase, and ascorbate peroxidase), phytohormones (gibberellic acid, indole acetic acid, jasmonic acid, and salicylic acid), and mineral content (phosphorus, nitrogen, and potassium), compared to infected plants. However, compared to PVY infection values, CHT and P treatments showed a significant decrease in malondialdehyde, DPPH, H2O2, O2, OH, and abscisic acid levels. In addition, increased expression levels of some regulatory defense genes, including superoxide dismutase (SOD), ascorbic acid peroxidase (APX), relative pathogenesis-related 1 basic (PR-1b), and relative phenylalanine ammonia-lyase (PAL), were found in all treated plants, compared to PVY-infected plants. Conclusion: Phosphorus is the most effective treatment for alleviating virus infections.
Salinity is linked to poor plant growth and a reduction in global food output. Therefore, there is an essential need for plant adaptation and mitigation of salinity stress conditions. Plants combat salinity stress influences by promoting a set of physiological, biochemical, and molecular actions. Tremendous mechanisms are being applied to induce plant stress tolerance, involving amino acid application. For evaluating the growth and productivity of Moringa oleifera trees grown under salt stress conditions, moringa has been cultivated under different levels of salinity and subjected to a foliar spray of proline (Pro) and phenylalanine (Phe) amino acids. Moringa plants positively responded to the lowest level of salinity as the leaves, inflorescences, seeds, and oil yields have been increased, but the growth and productivity slightly declined with increasing salinity levels after that. However, Pro and Phe applications significantly ameliorate these effects, particularly, Pro-treatments which decelerated chlorophyll and protein degradation and enhanced vitamin C, polyphenols, and antioxidant activity. A slight reduction in mineral content was observed under the high levels of salinity. Higher osmoprotectants (proline, protein, and total soluble sugars) content was given following Pro treatment in salted and unsalted plants. A significant reduction in oil yield was obtained as affected by salinity stress. Additionally, salinity exhibited a reduction in oleic acid (C18:1), linoleic (C18:2), and linolenic (C18:3) acids, and an increase in stearic (C18:0), palmitic (C16:0), eicosenoic (C20:2), and behenic (C22:0) acids. Generally, Pro and Phe treatments overcome the harmful effects of salinity in moringa trees by stimulating the osmoprotectants, polyphenols, and antioxidant activity, causing higher dry matter accumulation and better defense against salinity stress.
Prickly pear plant is widely cultivated in arid and semi-arid climates. Its fruits are rich in polyphenols, proteins, vitamin C, minerals, fatty acids, and amino acids. The oil extracted from the seeds also has a significant proportion of linoleic acid (ω6) and might be employed as a therapeutic raw material. The potential of enhancing fruit yield, increasing bioactive compounds of the fruit pulp, and improving the unsaturated fatty acid content of prickly pear oilseed by using the foliar application of brassinolide as a plant growth regulator was the main goal of this study. Prickly pear plants were foliar sprayed with a brassinolide solution at concentrations of 0, 1, 3, and 5 mg L−1. The plant performance was significantly improved following brassinolide applications, as compared with untreated plants. The plants subjected to 5 mg L−1 application exhibited 183 and 188% stimulation in the fruit yield, and 167 and 172% in the seed yield for the first and second seasons, respectively. The highest concentration of phenolic, flavonoid, protein, vitamin C, and maximum antioxidant activity in the fruit pulp was observed following 5 mg L−1 brassinolide treatment. The oil yield has been increased by 366 and 353% following brassinolide at a 5 mg L−1 level over control plants. Linoleic, oleic, and palmitic acids are the major components in prickly pear seed oil. Brassinolide foliar spraying induced an alternation in the fatty acid profile, as linoleic and oleic acids exhibited 5 and 4% higher following 5 mg L−1 application as compared with untreated plants. In conclusion, the treatment of 5 mg L−1 brassinolide improved the growth and quality of prickly pear plants by boosting fruit and seed yields, increasing active component content in the fruit pulp, improving mineral content, and increasing oil production and linoleic acid proportion.
Environmental pollution is a very serious menace in the present circumstances. Rapid industrialization and urbanization are the main reason for water pollution as they are continuously discharging waste into rivers and other water bodies. Many industries like electroplating, tanning, paper, textile etc. are key component of discharging effluents causing heavy metal pollution (Jyoti and Awasthi, 2014). These heavy metals accumulate in the food chain of aquatic and terrestrial ecosystem posing health hazards (Ahluwalia and Goyal, 2007). Out of all the heavy metals, Chromium is found to be highly toxic and carcinogenic. In humans, it poses health problems like DNA damage, nausea, vomiting, nasal irritation and ulceration, skin irritation, eardrum perforation and lung carcinoma (Dayan and Paine, 2000).It persists in environment in two oxidation states Cr (III) and Cr (VI) (Shanker, et al. 2005). Hexavalent Chromium is more toxic than trivalent chromium and often present in wastewater as chromate and dichromate(Barnhart, 1997).
A laboratory experiment was conducted to produce Chlorella vulgaris biomass grew on date wastes. The green microalgae were grown indoor on BG-11 medium in plexi glass columns with continuous fluorescent light and aeration. Date palm (Phoenix dactylifera) fruit wastes were washed and the flesh was oven dried at 55°C for 24h after removing the stones to obtain the flesh powder (0.9mm). Algal growth was performed under different stress conditions included (1) concentrations of 0.0, 10, 20, 30, 40 ml l-1 of wastes enriched growth media (2) NaCl concentration of 0.0, 0.5, 1.0,1.5, 2% and (3) nitrogen concentrations of 0, 25, 50, 75, 100%. The determinations included DW, total chlorophyll, carotenes and growth analysis. The obtained results showed that, the superior obtained net biomass was (0.215g l-1) with 20 ml l-1 of PDWE concentration. The net obtained chlorophyll was (34.515 mg l-1) with 30 ml l-1 of PDWE and highest carotenoid content (2.802 mg l-1) was recorded with the control. The dry weight and chlorophyll content decreased with increasing salinity, on contrary, the carotene content increased up to 1.5% and then back off again. The dry weight and chlorophyll content decreased with nitrogen decreasing while, the carotene content increased with nitrogen decreasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.