High sensitivity imaging tools could provide a more holistic view of target antigen expression to improve the identification of patients who might benefit from cancer immunotherapy. We developed for immunoPET a novel recombinant human IgG1 (termed C4) that potently binds an extracellular epitope on human and mouse PD-L1 and radiolabeled the antibody with zirconium-89. Small animal PET/CT studies showed that 89Zr-C4 detected antigen levels on a patient derived xenograft (PDX) established from a non-small-cell lung cancer (NSCLC) patient before an 8-month response to anti-PD-1 and anti-CTLA4 therapy. Importantly, the concentration of antigen is beneath the detection limit of previously developed anti-PD-L1 radiotracers, including radiolabeled atezolizumab. We also show that 89Zr-C4 can specifically detect antigen in human NSCLC and prostate cancer models endogenously expressing a broad range of PD-L1. 89Zr-C4 detects mouse PD-L1 expression changes in immunocompetent mice, suggesting that endogenous PD-1/2 will not confound human imaging. Lastly, we found that 89Zr-C4 could detect acute changes in tumor expression of PD-L1 due to standard of care chemotherapies. In summary, we present evidence that low levels of PD-L1 in clinically relevant cancer models can be imaged with immunoPET using a novel recombinant human antibody.
The biomolecular condensation of proteins with low complexity sequences plays a functional role in RNA metabolism and a pathogenic role in neurodegenerative diseases. The formation of dynamic liquid droplets brings biomolecules together to achieve complex cellular functions. The rigidification of liquid droplets into β-strand-rich hydrogel structures composed of protein fibrils is thought to be purely pathological in nature. However, low complexity sequences often harbor multiple fibrilprone regions with delicately balanced functional and pathological interactions. Here, we investigate the maturation of liquid droplets formed by the low complexity domain of the TAR DNA-binding protein 43 (TDP-43). Solid state nuclear magnetic resonance measurements on the aged liquid droplets identify residues 365−400 as the structured core, which are squarely outside the region between residues 311−360 thought to be most important for pathological fibril formation and aggregation. The results of this study suggest that multiple segments of this low complexity domain are prone to form fibrils and that stabilization of β-strand-rich structure in one segment precludes the other region from adopting a rigid fibril structure.
The glucocorticoid receptor (GR) is an emerging drug target for several common and deadly solid tumors like breast and prostate cancer, and clinical trials studying the antitumor effects of GR antagonists are beginning. Since GR expression can be variable in tumor cells, and virtually all normal mammalian tissues express some GR, we hypothesized that an imaging tool capable of detecting GR positive tumors and/or measuring GR occupancy by drug in tumor and normal tissues could improve the precision application of anti-GR therapies in the clinic. To this end, we developed a fluorine-18 labeled corticosteroid termed GR02 that potently binds the endogenous ligand binding pocket on full length GR. Binding of 18F-GR02 was suppressed in many normal tissues by co-treatment with mifepristone, a GR antagonist in human use, and was elevated in many normal tissues among mice lacking circulating corticosteroids due to adrenalectomy. 18F-GR02 also accumulated in GR positive subcutaneous and subrenal capsule prostate cancer models, and uptake in tumors was competed by mifepristone. Combined with a straightforward and high yielding radiosynthesis, these data establish the foundation for near-term clinical translation of 18F-GR02.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.