A two dimensional spectral/spatial cyclic shift (2D-CS) optical code division multiple access (OCDMA) systems is proposed for a potentially next generation passive optical network (NG-PON) implementation called (2D-CS NG-OCDMA-PON) system. The2D-CS proposed code is characterized by a high capacity and a zero cross correlation property leads to completely eliminating the multiple access interference (MAI) effect that is considered as the main OCDMA system drawback. Firstly, the 2D-CScode construction is investigated from 1D-CS code. Secondly, a system description is provided by exhibiting the transmitter and receiver architecture in the PON context. Analytical analysis reveals that our proposed 2D-CScode outperforms similar codes such as perfect difference (2D-PD) and dynamic cyclic shift (2D-DCS) codes in terms of spectral efficiency, simultaneous network subscribers and data bit rate. In addition, based on numerical analysis 2D-CS NG-OCDMA-PON system shows a good system performance by means of avery low BER and a high Qfactor values equal to10 −26 and 10.41 dB, respectively. Likewise, for four users and free-amplification the achievable reach ability distance of the NG-OCDMA-PON system is 63.21 km, 43.57 km and 33.2 km while Q-factor is equal to 6 dB at a bit rate of 622Mb/s, 1Gb/s and 1.5 Gb/s, respectively. On the other side, according to the system setup the number of single mode fiber (SMF) is reduced to the half compared to other 2D-OCDMA-PON systems based on enhanced multi diagonal (EMD) and single weight ZCC (SWZCC) codes.
A two dimensional spectral/spatial cyclic shift (2D-CS) optical code division multiple access (OCDMA) systems is proposed for a potentially next generation passive optical network (NG-PON) implementation called (2D-CS NG-OCDMA-PON) system. The2D-CS proposed code is characterized by a high capacity and a zero cross correlation property leads to completely eliminating the multiple access interference (MAI) effect that is considered as the main OCDMA system drawback. Firstly, the 2D-CScode construction is investigated from 1D-CS code. Secondly, a system description is provided by exhibiting the transmitter and receiver architecture in the PON context. Analytical analysis reveals that our proposed 2D-CScode outperforms similar codes such as perfect difference (2D-PD) and dynamic cyclic shift (2D-DCS) codes in terms of spectral efficiency, simultaneous network subscribers and data bit rate. In addition, based on numerical analysis 2D-CS NG-OCDMA-PON system shows a good system performance by means of avery low BER and a high Q-factor values equal to\({10}^{-26}\) and 10.41 dB, respectively. Likewise, for four users and free-amplification the achievable reach ability distance of the NG-OCDMA-PON system is 63.21 km, 43.57 km and 33.2 km while Q-factor is equal to 6 dB at a bit rate of 622Mb/s, 1Gb/s and 1.5 Gb/s, respectively. On the other side, according to the system setup the number of single mode fiber (SMF) is reduced to the half compared to other 2D-OCDMA-PON systems based on enhanced multi diagonal (EMD) and single weight ZCC (SWZCC) codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.