Abstract. Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as a traditional medicine in China, Korea, and Japan for thousands of years and is now a popular and worldwide used natural medicine. The active ingredients of ginseng are ginsenosides which are also called ginseng saponins. Recently, there is increasing evidence in the literature on the pharmacological and physiological actions of ginseng. However, ginseng has been used primarily as a tonic to invigorate week bodies and help the restoration of homeostasis. Current in vivo and in vitro studies have shown its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency, and hepatotoxicity. Moreover, recent research has suggested that some of ginseng's active ingredients also exert beneficial effects on aging, central nervous system (CNS) disorders, and neurodegenerative diseases. In general, antioxidant, anti-inflammatory, anti-apoptotic, and immune-stimulatory activities are mostly underlying the possible ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms that involve decreasing nitric oxide (NO), scavenging of free radicals, and counteracting excitotoxicity. In this review, we focus on recently reported medicinal effects of ginseng and summarize the current knowledge of its effects on CNS disorders and neurodegenerative diseases.
Ginsenosides are a special group of triterpenoid saponins attributed to medical effects of ginseng. Therefore, they have been research targets over the last three decades to explain ginseng actions and a wealth of literature has been presented reporting on ginsenosides' effects on the human body. Recently, there is increasing evidence on beneficial effects of ginsenosides to the central nervous system (CNS). Using a wide range of in vitro and in vivo models, researchers have attributed these effects to specific pharmacological actions of ginsenosides on cerebral metabolism, oxidative stress and radical formation, neurotransmitter imbalance and membrane stabilizing effects, and even antiapoptotic effects. Modulating these particular mechanisms by ginsenosides has thus been reported to exert either general stimulatory effects on the brain functions or protecting the CNS against various disease conditions. In this review, we try to address the recently reported ginsenosides' actions on different CNS targets particularly those supporting possible therapeutic efficacies in CNS disorders and neurodegenerative diseases.
Ginsenosides Rb1 and Rg1 are the main active ingredients of Panax ginseng C.A. Meyer (Araliaceae). They appear to exert protection against ischaemia and anoxic damage in animal models, suggesting an antioxidative and cytoprotective role. In our study, primary cultures from embryonic mouse mesencephalon are applied to examine the effects of these two ginsenosides on neuritic growth of dopaminergic cells and their survival affected by 1-methyl-4-phenylpyridinium-iodide (MPP(+)). Ginsenoside Rb1 (at 10 microM) enhanced the survival of dopaminergic neurons by 19% compared to untreated control. MPP(+) (at 1 microM) significantly reduced the number of dopaminergic neurons and severely affected neuronal processes. Both ginsenosides counteracted these degenerations and significantly protected lengths and numbers of neurites of TH(+) cells. Both compounds however could not prevent the cell loss caused by MPP(+). Our study thus indicates partial neurotrophic and neuroprotective actions of ginsenosides Rb1 and Rg1 in dopaminergic cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.