The microservices architectural style offers many advantages such as scalability, reusability and ease of maintainability. As such microservices has become a common architectural choice when developing new applications. Hence, to benefit from these advantages, monolithic applications need to be redesigned in order to migrate to a microservice based architecture. Due to the inherent complexity and high costs related to this process, it is crucial to automate this task. In this paper, we propose a method that can identify potential microservices from a given monolithic application. Our method takes as input the source code of the source application in order to measure the similarities and dependencies between all of the classes in the system using their interactions and the domain terminology employed within the code. These similarity values are then used with a variant of a density-based clustering algorithm to generate a hierarchical structure of the recommended microservices while identifying potential outlier classes. We provide an empirical evaluation of our approach through different experimental settings including a comparison with existing human-designed microservices and a comparison with 5 baselines. The results show that our method succeeds in generating microservices that are overall more cohesive and that have fewer interactions in-between them with up to 0.9 of precision score when compared to human-designed microservices.
CCS CONCEPTS• Software and its engineering → Software architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.