Palestinian healthcare institutions face difficulties in providing effective service delivery, particularly in times of crisis. Problems arising from inadequate healthcare service delivery are traceable to issues such as spatial coverage, emergency response time, infrastructure, and manpower. In the Gaza Strip, specifically, there is inadequate spatial distribution and accessibility to healthcare facilities due to decades of conflicts. This study focuses on identifying hospital site suitability areas within the Gaza Strip in Palestine. The study aims to find an optimal solution for a suitable hospital location through suitability mapping using relevant environmental, topographic, and geodemographic parameters and their variable criteria. To find the most significant parameters that reduce the error rate and increase the efficiency for the suitability analysis, this study utilized machine learning methods. Identification of the most significant parameters (conditioning factors) that influence a suitable hospital location was achieved by employing correlation-based feature selection (CFS) with the search algorithm (greedy stepwise). Thus, the suitability map of potential hospital sites was modeled using a support vector machine (SVM), multilayer perceptron (MLP), and linear regression (LR) models. The results of the predicted sites were validated using CFS cross-validation and the receiver operating characteristic (ROC) curve metrics. The CFS analysis shows very high correlations with R2 values of 0.94, 0. 93, and 0.75 for the SVM, MLP, and LR models, respectively. Moreover, based on areas under the ROC curve, the MLP model produced a prediction accuracy of 84.90%, SVM of 75.60%, and LR of 64.40%. The findings demonstrate that the machine learning techniques used in this study are reliable, and therefore are a promising approach for assessing a suitable location for hospital sites for effective health delivery planning and implementation.
This study focuses on suitable site identification for constructing a hospital in Malacca, Malaysia. Using significant environmental, topographic, and geodemographic factors, the study evaluated and compared machine learning (ML) and multicriteria decision analysis (MCDA) for hospital site suitability mapping to discover the highest influential factors that minimize the error ratio and maximize the effectiveness of the suitability investigation. Identification of the most significant conditioning parameters that impact the choice of an appropriate hospital site was accomplished using correlation-based feature selection (CFS) with a search algorithm (greedy stepwise). To model the potential hospital site map, we utilized multilayer perceptron (MLP) and analytical hierarchy process (AHP) models. The outcome of the predicted site models was validated utilizing CFS 10-fold cross-validation, as well as ROC curve (receiver operating characteristic curve). The analysis of CFS indicated a very high correlation with R2 values of 0.99 for the MLP model. However, the ROC curve indicated a prediction accuracy of 80% for the MLP model and 83% for the AHP model. The findings revealed that the MLP model is reliable and consistent with the AHP. It is a sufficiently promising approach to the location suitability of hospitals to ensure effective planning and performance of healthcare delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.