Recently, structural vibration control has proved its capacity to save lives and keep structures safe during earthquakes. Furthermore, there is a wealth of research in both numerical and experimental studies. As a result, due to its simplicity and performance in mitigating structural vibrations generated by ground motions, semi-active control played a significant role in the majority of these studies. Nonetheless, the magnetorheological damper is the most often used semi-active device. In particular, the rheological fluid properties have gained adequate attention in earthquake energy dissipation and structural vibrations management, particularly in the civil engineering field. The semi-active control of three scaled excited structures is addressed in this study. A magnetorheological damper operated by a hybrid fuzzy sliding mode controller ensures the proposed control. However, to provide the appropriate current for the damper to operate, this proposed intelligent controller is combined with a clipped optimum algorithm. Otherwise, the numerical simulation results of the seismic excited scaled structure demonstrate the resilience of the suggested controller. As a result, four time-scaled seismic data are applied to the tested structure. Finally, the usefulness of the suggested semi-active control technique in mitigating earthquake structural vibration is demonstrated clearly in the compared controlled and uncontrolled responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.