Algorithms to construct the optimal systems of dimension of at most three of Lie algebras are given. These algorithms are applied to determine the Lie algebra structure and optimal systems of the symmetries of the wave equation on static spherically symmetric spacetimes admitting G7 as an isometry algebra. Joint invariants and invariant solutions corresponding to three-dimensional optimal systems are also determined.
In this paper, a weakly dissipative viscoelastic plate equation with an infinite memory is considered. We show a general energy decay rate for a wide class of relaxation functions. To support our theoretical findings, some numerical illustrations are presented at the end. The numerical solution is computed using the popular finite element method in space, combined with time-stepping finite differences.
In this paper, we consider a weakly dissipative viscoelastic equation with a nonlinear damping. A general decay rate is proved for a wide class of relaxation functions. To support our theoretical findings, some numerical results are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.