In this work, an experimental research on a low voltage DC magnetron plasma sputtering (0-650) volt is used for coating gold on a glass substrate at a constant pressure of argon gas 0.2 mbar and deposition time of 30 seconds. We focused on the effects of operating conditions for the system such as, electrode separation and sputtering current on coated samples under the influence of magnetic flux. Electron temperature and electrons and ions densities are determined by a cylindrical single Langmuir probe. The results show the sensitivity of electrode separation lead to change the plasma parameters. Furthermore, the surface morphology of gold coated samples at different electrode separation and sputtering current were studied by atomic force microscopy (AFM). The AFM analysis showed that the variation of average grain diameter and average grain height is nonlinear with a minimum value of average grain diameter 90 nm at electrode separation of 4 cm and 30 mA sputtering current.
In this work, the effect of the electrodes separation on plasma parameters and morphology properties for coated glass samples by silver metal using low voltage DC discharge plasma sputtering source. At fixed argon gas pressure 0.2 mbar and discharge currents I d (20,30,40,50 and 60)mA, for different electrodes separation d (3,4,4.5,5,6)cm was studied. The plasma sputtering source consists of a cylindrical chamber including two circular electrodes made from stainless steel. The cathode electrode is carrying the silver metal as a target and permanent magnet, while a glass sample coater is placed on the anode electrode. The plasma parameters: temperature of electron(T e) and ion density(n i) were determined by using cylindrical single Langmuir probe. Also, the surface morphology for the coater samples were studied by atomic force microscope (AFM). The results of this work shown that a linear increases in ions density and an exponential decreasing in electron temperature for different electrodes separation. Furthermore, the relationship between the average grain diameter and average grain height as a function of electrodes separation are nonlinear. The minimum average grain diameter is (90 nm) at d=4 cm for I d =40 mA and minimum average grain height is (5.5 nm) at the same electrodes separation and discharge current. When the temperature of electron increased, the values of average grain diameter increased while the values of average grain height decreased.
A theoretical investigation was carried out to show the effect of the length of the cathode fall region on the deposition rate of copper atoms on a substrate using dc plasma sputtering source. The effects of the discharge voltage (−1 to −3 kV) and argon gas pressure (1 × 10–2 to 5 × 10–1 mbar) on the length of the cathode fall region of the proposed plasma source were investigated. The flux energies of gas ions, neutral’s gas atoms and electrons in one dimension were calculated to determine the length of the cathode fall region, total current density and the rate of deposition of copper atoms. The results show that the length of the cathode fall region increases when low gas pressure is used at high values of the discharge voltage for the plasma source. There is also a relationship between the length of the cathode fall region and the rate of deposition of copper atoms on the substrate, where the deposition rate increased by 76% when the cathode fall length increased by 120% at the discharge voltage −3 kV and the pressure of gas 1 × 10–2 mbar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.