The design and operationalization of a wind energy system is mainly based on wind speed and wind direction, theses parameters depend on several geographic, temporal, and climatic factors. Fluctuating factors such as climate cause irregularities in wind energy production. Therefore, wind power forecasting is necessary before using wind power systems. Furthermore, in order to make informed decisions, it is necessary to explain the system's predictions to stakeholders. The explainable artificial intelligence (XAI) provides an interactive interface for intelligent systems to interact with machines, validate their results, and trust their behavior. In this paper, we provide an interpretable system for predicting wind energy using weather data. This system is based on a two-step method for fuzzy rules learning clustering (FRLC). The first step uses subtractive clustering and a linguistic approximation to extract linguistic rules. The second step uses linguistic hedges to refine linguistic rules. FRLC is compared to with artificial neural network (ANN), random forest (RF), k-nearest neighbors (K-NN), and support vector regression (SVR) models. The experimental results show that the accuracy of FRLC is acceptable regarding the comparison models and outperform them in terms of the interpretability. In parallel with prediction, FRLC model provides a set of linguistic fuzzy rules that explain the obtained results to the stakeholders.
The design and operationalization of a wind energy system is mainly based on wind speed and wind direction, theses parameters depend on several geographic, temporal, and climatic factors. Fluctuating factors such as climate cause irregularities in wind energy production. Therefore, wind power forecasting is necessary before using wind power systems. Furthermore, in order to make informed decisions, it is necessary to explain the system's predictions to stakeholders. The explainable artificial intelligence (XAI) provides an interactive interface for intelligent systems to interact with machines, validate their results, and trust their behavior. In this paper, we provide an interpretable system for predicting wind energy using weather data. This system is based on a two-step method for fuzzy rules learning clustering (FRLC). The first step uses subtractive clustering and a linguistic approximation to extract linguistic rules. The second step uses linguistic hedges to refine linguistic rules. FRLC is compared to with artificial neural network (ANN), random forest (RF), k-nearest neighbors (K-NN), and support vector regression (SVR) models. The experimental results show that the accuracy of FRLC is acceptable regarding the comparison models and outperform them in terms of the interpretability. In parallel with prediction, FRLC model provides a set of linguistic fuzzy rules that explain the obtained results to the stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.