Lung cancer is now the number one cause of cancer death for both men and women. An age-adjusted analysis over the past 25 years shows that in women specifically, lung cancer incidence is on the rise. It is estimated that 10-20 genetic events including the alteration of oncogenes and tumor suppressor genes will have occurred by the time a lung tumor becomes clinically evident. In an effort to identify regions containing novel cancer genes, chromosome 18p11, a band not previously implicated in disease, was examined for loss of heterozygosity (LOH). In this study, 50 matched normal and NSCLC tumor samples were examined using six 18p11 and one 18q12.3 PCR-based polymorphic markers. In addition, LOH was examined in 29 glioblastoma pairs and 14 paired breast carcinomas. This analysis has revealed potentially two regions of LOH in 18p11 in up to 38% of the tumor samples examined. The regions of LOH identified included a 2 cm area between markers D18S59 and D18S476, and a more proximal, 25 cm region of intermediate frequency between D18S452 and D18S453. These results provide evidence for the presence of one or more potential tumor suppressor genes on the short arm of chromosome 18 which may be involved in NSCLC, brain tumors and possibly breast carcinomas as well.
APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G-G cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253)]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) and APTO-253 on G-quadruplex DNA motifs. .
Glucocorticoids are commonly used antiinflammatory agents whose use is limited by side effects. We have developed a series of glucocorticoid receptor (GR) ligands that retain the strong antiinflammatory activity of conventional glucocorticoids with reduced side effects. We present a compound, LGD5552, that binds the receptor efficiently and strongly represses inflammatory gene expression. LGD5552 bound to GR activates gene expression somewhat differently than glucocorticoids. It activates some genes with an efficacy similar to that of the glucocorticoids. However, other glucocorticoid-activated genes are not regulated by LGD5552. These differences may be because of the more efficient binding of corepressor in the presence of LGD5552, compared with glucocorticoid agonists. This class of nonsteroidal, GR-dependent antiinflammatory drugs may offer a safer alternative to steroidal glucocorticoids in the treatment of inflammatory disease.selective glucocorticoid receptor modulator (SGRM) ͉ nonsteroid ͉ dissociated ͉ repression
Treatment of inflammation is often accomplished through the use of glucocorticoids. However, their use is limited by side effects. We have examined the activity of a novel glucocorticoid receptor ligand that binds the receptor efficiently and strongly represses inflammatory gene expression. This compound has potent antiinflammatory activity in vivo and represses the transcription of the inflammatory cytokine monocyte chemoattractant protein-1 and induces the antiinflammatory cytokine IL-10. The compound demonstrates differential gene regulation, compared with commonly prescribed glucocorticoids, effectively inducing some genes and repressing others in a manner different from the glucocorticoid prednisolone. The separation between the antiinflammatory effects of LGD-5552 and the side effects commonly associated with glucocorticoid treatment suggest that this molecule differs significantly from prednisolone and other steroids and may provide a safer therapeutic window for inflammatory conditions now commonly treated with steroidal glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.