Résumé. Il
Abstract. It is shown by Mentagui [ESAIM : COCV 9 (2003) 297-315] that, in the case of generalBanach spaces, the Attouch-Wets convergence is stable by a class of classical operations of convex analysis, when the limits satisfy some natural qualification conditions. This fails with the slice convergence. We establish here uniform qualification conditions ensuring the stability of the slice convergence under the same operations which play a basic role in convex optimization. We obtain as consequences, some key stability results of epi-convergence established by Mc Linden and Bergstrom [Trans. Amer. Math. Soc. 286 (1981) 127-142] in finite dimension. As an application, we give a model of convergence and stability for a wide class of problems in convex optimization and duality theory. The key ingredients in our methodology are, the horizon analysis, the notions of quasi-continuity and inf-local compactness of convex functions, and the bicontinuity of the Legendre-Fenchel transform relatively to the slice convergence.Classification Mathématique. 90C25, 90C31, 49K40, 46N10.Reçu le 22 janvier 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.