<p><span lang="EN-US">Wireless communications have experienced tremendous growth, and improving their performance based on specific parameters requires an accurate model. Salt seawater, being an abundant resource, could play a crucial role in various applications such as enhancing electrical conductivity, monitoring security, improving battery power efficiency, and creating liquid antennas. Salinity is an essential factor to consider when developing these applications. This paper focused on investigating the electromagnetic properties of seawater salinity in the context of marine wireless communications. The results of the study showed that salinity has a significant impact on the Fresnel reflection coefficient in terms of magnitude, phase shift, and polarization, and can either constructively or destructively affect it. The new model paved the way for the development of an integrated salt seawater model that addressed the complex salinity issues involved in these applications.</span></p>
<span lang="EN-US">Future wireless networks are expected to face several issues, but cooperative non-orthogonal multiple access (C-NOMA) is a promising technology that could help solve them by providing unprecedented levels of connection and system capacity. In this regard, the influence of the power location coefficient (PLC) for remote users adopting multiple-input-multiple-output (MIMO) and massive MIMO has been explored to provide effective performance. The goal of this study is to design fifth-generation (5G) downlink (DL) NOMA power domain (PD) networks with a variety of distances and PLCs for remote users and then to compare their outage probability (OP) performance versus signal to noise ratio (SNR). As a novel approach to improving OP performance rate and mitigating the influence of the PLC for remote users, DL C-NOMA is combined with 16×16, 32×23, and 64×64 MIMO and 128×128, 256×256, and 512×512 massive MIMO. The results were obtained that the 64×64 MIMO improves the OP for the remote user by 65.0E-03, while the 512×512 massive MIMO achieved an improvement that reaches 1.0E-06 for the PLC of 0.8 at SNR of 14 dB. The Rayleigh fading channels and MATLAB simulation tools were utilized to carry out the study work.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.