A Cyclic Prefix (CP) is a significant feature of an OFDM waveform. It is used to completely eliminate both Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI) as long as the CP length is greater than the channel delay spread. By eliminating both ISI and ICI, the CP compensates for the effect of the multipath dispersion; but it consumes a considerable amount of the scarce spectrum and the power. Conventional OFDM uses a fixed and large CP length to overcome the ISI caused by channel delay spread under wireless mobile environment. This approach may degrade the overall spectral efficiency as well as consumes relatively more transmitter energy. Therefore, there is a need to adopt the CP length according to instantaneous channel parameters. In this paper, we presented a method for investigating the effect of varying the CP length on OFDM system performance over different multipath channel models. We estimated the variable CP length based on the RMS delay spread of the channels' power delay profile (PDP). According to this method, the estimated CP length optimizes the system capacity and improves the overall system performance. We showed that this approach could lead to a mathematical formula presenting the relationship between the CP length and the RMS delay spread of the channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.