We studied a mouse model of the haploinsufficiency form of Rubinstein-Taybi syndrome (RTS), an inheritable disorder caused by mutations in the gene encoding the CREB binding protein (CBP) and characterized by mental retardation and skeletal abnormalities. In these mice, chromatin acetylation, some forms of long-term memory, and the late phase of hippocampal long-term potentiation (L-LTP) were impaired. We ameliorated the L-LTP deficit in two ways: (1) by enhancing the expression of CREB-dependent genes, and (2) by inhibiting histone deacetyltransferase activity (HDAC), the molecular counterpart of the histone acetylation function of CBP. Inhibition of HDAC also reversed the memory defect observed in fear conditioning. These findings suggest that some of the cognitive and physiological deficits observed on RTS are not simply due to the reduction of CBP during development but may also result from the continued requirement throughout life for both the CREB co-activation and the histone acetylation function of CBP.
Whereas significant insight exists as to how LTP-related changes can contribute to the formation of long-term memory, little is known about the role of hippocampal LTD-like changes in learning and memory storage. We describe a mouse lacking the transcription factor SRF in the adult forebrain. This mouse could not acquire a hippocampus-based immediate memory for a novel context even across a few minute timespan, which led to a profound but selective deficit in explicit spatial memory. These animals were also impaired in the induction of LTD, including LTD triggered by a cholinergic agonist. Moreover, genes regulating two processes essential for LTD-calcium release from intracellular stores and phosphatase activation-were abnormally expressed in knockouts. These findings suggest that for the hippocampus to form associative spatial memories through LTP-like processes, it must first undergo learning of the context per se through exploration and the learning of familiarity, which requires LTD-like processes.
The present study investigated the role of dopamine neurotransmission within the nucleus accumbens (NAc) in flavor preference learning induced by the postoral consequences of carbohydrates. In Experiment 1, rats fitted with a gastric catheter were trained with a flavor (CS+) paired with intragastric (IG) infusions of 8% glucose and a different flavor (CS-) paired with IG water infusions. The CS+ preference was then evaluated in two-bottle preference tests following bilateral injection of the dopamine D1-like receptor antagonist SCH23390 into the NAc shell at total doses of 0, 12, 24 and 48 nmol. SCH23390 produced dose-related reductions in CS+ intake but did not block the CS+ preference except at the highest dose, which also greatly suppressed the CS intakes. In Experiment 2, new rats were injected daily in the NAc shell with either saline or SCH23390 (12 nmol), 10 min prior to training sessions with CS+ with IG glucose and CS- with IG water. In the two-bottle preference tests, the drug-treated rats, unlike the control rats, did not significantly prefer the CS+ (61 vs. 83% preference). In Experiment 3, new rats were trained with the same procedures as Experiment 2, except that brain injections were in the NAc core. In contrast to control rats, SCH-treated rats failed to prefer the CS+ to the CS- in two-bottle tests (55% vs. 89% preference). These results demonstrate that D1-like receptors in the NAc shell and core are greatly involved in the acquisition, but less so in the expression, of a flavor preference conditioned by postingestive effects of glucose.
An early study performed in Bart Hoebel’s laboratory suggested that dopamine (DA) signaling in the nucleus accumbens was involved in learned flavor preferences produced by post-oral nutritive feedback. This paper summarizes our studies investigating the role of DA in flavor preferences conditioning using selective DA receptor antagonists. Food-restricted rats were trained to prefer a flavored saccharin solution (CS+) paired with intragastric (IG) sugar infusions over a flavored saccharin solution (CS−) paired with water infusions. Systemic injections of a D1-like receptor antagonist (SCH23390), but not a D2-like receptor antagonist (raclopride) during training blocked flavor preference learning. Neither drug prevented the expression of an already learned preference except at high doses that greatly suppressed total intakes. Central sites of action were examined by local microinjections of SCH23390 (12 nmol) during flavor training or testing. Drug infusions in the nucleus accumbens, amygdala, medial prefrontal cortex, or lateral hypothalamus during training blocked or attenuated CS+ flavor conditioning by IG glucose infusions. The same drug dose did not suppress the expression of a learned CS+ preference. The findings suggest that DA signaling within different components of a distributed brain network is involved in sugar-based flavor preferences. A possible role of DA in conditioned increases in flavor acceptance is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.