The rapid spread of the coronavirus disease COVID-19 has imposed clinical and financial burdens on hospitals and governments attempting to provide patients with medical care and implement disease-controlling policies. The transmissibility of the disease was shown to be correlated with the patient’s viral load, which can be measured during testing using the cycle threshold (Ct). Previous models have utilized Ct to forecast the trajectory of the spread, which can provide valuable information to better allocate resources and change policies. However, these models combined other variables specific to medical institutions or came in the form of compartmental models that rely on epidemiological assumptions, all of which could impose prediction uncertainties. In this study, we overcome these limitations using data-driven modeling that utilizes Ct and previous number of cases, two institution-independent variables. We collected three groups of patients (n = 6296, n = 3228, and n = 12,096) from different time periods to train, validate, and independently validate the models. We used three machine learning algorithms and three deep learning algorithms that can model the temporal dynamic behavior of the number of cases. The endpoint was 7-week forward number of cases, and the prediction was evaluated using mean square error (MSE). The sequence-to-sequence model showed the best prediction during validation (MSE = 0.025), while polynomial regression (OLS) and support vector machine regression (SVR) had better performance during independent validation (MSE = 0.1596, and MSE = 0.16754, respectively), which exhibited better generalizability of the latter. The OLS and SVR models were used on a dataset from an external institution and showed promise in predicting COVID-19 incidences across institutions. These models may support clinical and logistic decision-making after prospective validation.
Design requirements are often uncertain in the early stages of product development. Set-based design (SBD) is a paradigm for exploring, and keeping under consideration, several alternatives so that commitment to a single design can be delayed until requirements are settled. In addition, requirements may change over the lifetime of a component or a system. Novel manufacturing technologies may enable designs to be remanufactured to meet changed requirements. By considering this capability during the (SBD) optimization process, solutions can be scaled to meet evolving requirements and customer specifications even after commitment. Such an ability can also support a circular economy paradigm based on the return of used or discarded components and systems to working condition. We propose a (SBD) methodology to obtain scalable optimal solutions that can satisfy changing requirements through remanufacturing. We first use design optimization and surrogate modeling to obtain parametric optimal designs. This set of parametric optimal designs is then reduced to scalable optimal designs by observing a set of transition rules for the manufacturing process used (additive or subtractive). The methodology is demonstrated by means of a structural aeroengine component that is remanufactured by direct energy deposition of a stiffener to meet higher loading requirements
External corrosion was identified as one of the main causes of pipeline failures worldwide. A solution that addresses the issue of detecting and quantifying corrosivity of environment for application to existing exposed pipelines has been developed. It consists of a sensing array made of an assembly of thin strips of pipeline steel and a circuit that provides a visual sensor reading to the operator. The proposed sensor is passive and does not require a constant power supply. Circuit design was validated through simulations and lab experiments. Accelerated corrosion experiment was conducted to confirm the feasibility of the proposed corrosivity sensor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.