Due to the lack of studies on drought in the Lower Sebou basin (LSB), the complexity of drought event and the difference in climate conditions. The identification of the most appropriate drought indices (DIs) to assess drought conditions has become a priority. Therefore, assessing the performance of different drought indices was considered in order to identify the universal drought indices that are well adapted to the LSB. Based on data availability, five DIs were used: Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration Index (SPEI), Reconnaissance Drought Index (RDI), self-calibrated Palmer Drought Severity Index (sc-PDSI) and Streamflow Drought Index (SDI). The DIs were calculated on an annual scale using monthly time series of precipitation, temperature and river flow from 1984-2016. Thornthwaite's method was used to calculate potential evapotranspiration (PET). Pearson's correlation (r) were analyzed. Furthermore, five decision criteria namely robustness, traceability, transparency, sophistication and scalability were used to evaluate the performance of these indices. The results proved the fact that SPI is suitable to detect the drought duration and intensity compared to other indices with high correlation coefficients especially in sub humid regions, knowing that it tends to give more results that are humid in stations with semi-arid climates. SPI, SPEI and RDI follow the same trend during the period studied. However, sc-PDSI appears to be the most sensitive to temperature and precipitation by overestimating the drought conditions. Eventually, the results of the performance evaluation criteria revealed that SPEI classified first (total score = 137) among other meteorological drought indices, followed by SPI, RDI and sc-PDSI.
<p>Speleothems (cave carbonates) are widely distributed in terrestrial regions, and provide highly resolved records of past changes in climate and ecosystem conditions, encoded in the oxygen and carbon isotope proxies. The SISALv2 database, created by the PAGES-SISAL&#160; Phase 1 Working Group, provided 700 speleothem records from 293 cave sites, 500 of which have standardized chronologies. The database provided access to records that were hitherto unavailable in the original publications and/or repositories, and enabled regional-to-global scale analysis of climatic patterns using a variety of approaches such as data-model comparisons.&#160;</p>
<p>During the three&#160; year run of SISAL Phase 2,&#160; the working group members have:&#160;</p>
<p>(i) explored ways to synthesize modern cave monitoring data to provide robust modern baselines and improve proxy interpretations</p>
<p>(ii) added trace element proxies of Mg, Sr, Ba, and U concentrations, and Sr isotopes to a new SISAL database version to increase our understanding of regional climatic variability.</p>
<p>(iii) updated the SISAL database to incorporate an additional ~100 speleothem stable isotope datasets&#160;</p>
<p>(iv) and created an online interface web app (The SISAL App) with a user-friendly GUI to increase SISAL data accessibility.</p>
<p>Here, we present ongoing work synthesizing cave monitoring data, a summary of speleothem proxy records available in the SISALv3 database update and of ongoing Working Group research projects and a simple use case of The SISAL App. We briefly present a synopsis of the SISAL-community level discussions on best practices for reporting trace element data, and reducing data measured with high resolution laser ablation methods.&#160;</p>
<p>We conclude with a short discussion on research projects based on the latest SISAL database update and discuss ideas for potential future SISAL phases and projects. For this, we encourage participation and collaboration from researchers in different stages of their academic career and working in different geographical regions and allied disciplines interested in exploiting the new SISAL database version.&#160;</p>
<p><br /><br /></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.