Estimates of long-term change and land cover changes using satellite imagery update data about effects erosion on the destruction. This is relevant on semi-arid land where soil resources are scarce, and proper management requires matching LULC to the conditions to achieve sustainability. This study evaluates the impact of LULC changes on soil erosion using Landsat satellite images and the RUSLE model on plains around the Jarahi River and Shadegan International Wetlands. The maps of LULC were prepared with supervised classification and maximum-likelihood methods applied to pre-processed TM, ETM, and OLI images for 1989, 2003, and 2017. This study investigated the impacts of LULC changes on soil erosion. Based on the results, we observe that an assessment of LULC changes from 1989 to 2003 revealed diminishing bare land and wetland vegetation with increases in agricultural land and water features. The areas of agricultural lands and wetlands decreased from 2003 to 2017, while bare lands increased in the area. The areas with soil erosion rates < 1 Mg ha -1 y -1 have diminished, and areas having rates >1 Mg ha -1 y -1 increased in extent.We conclude that LULC changes led to increased soil erosion in Shadegan International Wetlands.Our study highlights the need to plan LULC changes to reduce soil erosion rates to achieve sustainable management. We argue that nature-based solutions can effectively reduce soil losses.
Estimates of long-term change and land cover changes using satellite imagery update data about effects erosion on the destruction. This is relevant on semi-arid land where soil resources are scarce, and proper management requires matching LULC to the conditions to achieve sustainability. This study evaluates the impact of LULC changes on soil erosion using Landsat satellite images and the RUSLE model on plains around the Jarahi River and Shadegan International Wetlands. The maps of LULC were prepared with supervised classification and maximum-likelihood methods applied to pre-processed TM, ETM, and OLI images for 1989, 2003, and 2017. This study investigated the impacts of LULC changes on soil erosion. Based on the results, we observe that an assessment of LULC changes from 1989 to 2003 revealed diminishing bare land and wetland vegetation with increases in agricultural land and water features. The areas of agricultural lands and wetlands decreased from 2003 to 2017, while bare lands increased in the area. The areas with soil erosion rates < 1 Mg ha-1 y-1 have diminished, and areas having rates >1 Mg ha-1 y-1 increased in extent. We conclude that LULC changes led to increased soil erosion in Shadegan International Wetlands. Our study highlights the need to plan LULC changes to reduce soil erosion rates to achieve sustainable management. We argue that nature-based solutions can effectively reduce soil losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.