We experimentally investigate the sedimentation of a non-wetting drop confined between two parallel walls. The whole system is immersed in a bath of liquid of low viscosity and a lubricating film may be dynamically formed between the drop and the walls of the cell. Depending on the thickness of the film and on the viscosity ratio between the droplet and the surrounding liquid, viscous dissipation localizes either in the lubrication layer or in the bulk of the drop. The velocity of the droplet is non-trivial as the thickness of the lubricating layer may depend on the interplay between interfacial tension and viscous dissipation. Interestingly, thin films whose nanometric thickness is set by long range intermolecular interactions may lubricate efficiently the motion of highly viscous droplets. We derive asymptotic models that successfully capture the settling velocity of the drop in the different regimes observed experimentally. The effect of partial wetting is finally illustrated by a sharp increase of the velocity of the drops that we attribute to a wetting transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.