Siegmund and Worsley considered the problem of testing for a signal with unknown location and scale in a Gaussian random field defined on R N . The test statistic was the maximum of a Gaussian random field in an (N + 1)-dimensional "scale space," N dimensions for location and one dimension for the scale of a smoothing kernel. Siegmund and Worsley used two methods, one involving the expected Euler characteristic of the excursion set and the other involving the volume of tubes, to derive an approximate null distribution. The purpose of this paper is to extend the scale space result to the rotation space random field when N = 2, where the maximum is taken over all rotations of the filter as well as scales. We apply this result to the problem of searching for activation in brain images obtained by functional magnetic resonance imaging (fMRI).
An analytical model is developed for the recently proposed Dual-Mode Energy Efficient Ethernetan extension to EEE with two modes of low-power operation. The model can be used for predicting energy savings for different loads and other traffic parameters. The results from the analytical model closely match the results obtained by simulation for synthetic and real traffic.
An analytical model is developed for the average packet delay for Dual-Mode Energy Efficient Ethernet to complement the power consumption model for Dual-Mode EEE developed previously. The model can be used for determining the tradeoff between power reduction and performance degradation caused by utilising the method. The analytical mode's results closely match the results from simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.