Rotatory dental instruments generate atmospheric aerosols that settle on various surfaces, including the dentist's head. The aim of this study was to quantitatively assess bacterial contamination of the dentist's head and to evaluate whether it is affected by using a rubber dam. Senior dental students (n=52) were asked to wear autoclaved headscarves as collection media while performing restorative dental treatment with and without a rubber dam. Four points from each headscarf were swabbed for bacterial culture after 30min of operative work. Bacterial contamination was quantified by counting the colony-forming units. Regardless of the collection point, using a rubber dam was associated with more bacterial colony-forming units than not using a rubber dam (P=0.009). Despite its clinical value, the rubber dam seems to result in significantly higher aerosol levels on various areas of the dentist's head, requiring that dentists cover their heads with suitable protective wear.
Background
Gingival tissue attachment is known to be important for long‐term prognosis of implants. This in vitro study evaluated the gingival attachment to zirconia implants and zirconia implants modified with sol‐gel derived TiO2 coatings.
Methods
Zirconia endodontic posts (n = 23) were used to function as implants that were inserted into the center of full‐thickness porcine gingival explants (n = 31). The tissue/implant specimens were then individually placed at an air/liquid interface on a stainless‐steel grid in cell culture wells containing a nutrient solution. The tissue cultures were incubated at 37°C in a 5% CO2 environment and at days 7 and 14, the specimens were harvested and analyzed by dynamic mechanical analysis (DMA) measurements under dynamic loading conditions mimicking natural mastication. Specimens were also analyzed by immunohistochemical staining identifying the laminin (Ln) γ2 chain specific for Ln‐332, which is known to be a crucial molecule for the proper attachment of epithelium to tooth/implant surface.
Results
Tissue attachment to TiO2‐coated zirconia demonstrated higher dynamic modulus of elasticity and higher creep modulus, meaning that the attachment is stronger and more resistant to damage during function over time. Laminin γ2 was identified in the attachment of epithelium to TiO2‐coated zirconia.
Conclusions
Both DMA and histological analysis support each other, so the gingival tissue is more strongly attached to sol‐gel derived TiO2‐coated zirconia than uncoated zirconia. Immunohistochemical staining showed that TiO2 coating may enhance the synthesis and deposition of Ln‐332 in the epithelial attachment to the implant surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.