Ecological and health-related issues have given rise to scholars and investigators' concerns in exploring the determinantal effects of organic food. But little attention has paid to the actual buying behaviour regarding organic foods; especially in developing economies such as Pakistan. Therefore, this study aims to analyze the actual consumer's purchasing behaviour about organic food. A theoretical framework based on green perceived value was developed to observe the study's objectives that determine the consumers' buying behaviour and intention. The moderating effects of food neophobia was also analyzed. Structural Equation Modeling (SEM) approach is used for analysis, and data collection was made from millennial, which is considered the most significant consumer part in Pakistan. Answers of 1324 university students indicate that all values, i.e., social (0.101), functional (0.314), conditional (0.228), and emotional (0.521) has a significant and positive impact on buying intent of users. Furthermore, consumers' intention to buy organic produce (0.282) is positively linked with buying behaviour, and food neophobia (0.091) also moderates positively between intention to purchase and organic food consumption. Moreover, the current study offers valuable insights to manufacturers, researchers, and advertisers of natural food. The study concluded the suggestions for future studies, and the limitations of the study are also stated.
For effective monitoring and control of the fermentation process, an accurate real-time measurement of important variables is necessary. These variables are very hard to measure in real-time due to constraints such as the time-varying, nonlinearity, strong coupling, and complex mechanism of the fermentation process. Constructing soft sensors with outstanding performance and robustness has become a core issue in industrial procedures. In this paper, a comprehensive review of existing data pre-processing approaches, variable selection methods, data-driven (black-box) soft-sensing modeling methods and optimization techniques was carried out. The data-driven methods used for the soft-sensing modeling such as support vector machine, multiple least square support vector machine, neural network, deep learning, fuzzy logic, probabilistic latent variable models are reviewed in detail. The optimization techniques used for the estimation of model parameters such as particle swarm optimization algorithm, ant colony optimization, artificial bee colony, cuckoo search algorithm, and genetic algorithm, are also discussed. A comprehensive analysis of various soft-sensing models is presented in tabular form which highlights the important methods used in the field of fermentation. More than 70 research publications on soft-sensing modeling methods for the estimation of variables have been examined and listed for quick reference. This review paper may be regarded as a useful source as a reference point for researchers to explore the opportunities for further enhancement in the field of soft-sensing modeling.
l-Lysine is produced by a complex non-linear fermentation process. A non-linear model predictive control (NMPC) scheme is proposed to control product concentration in real time for enhancing production. However, product concentration cannot be directly measured in real time. Least-square support vector machine (LSSVM) is used to predict product concentration in real time. Grey-Wolf Optimization (GWO) algorithm is used to optimize the key model parameters (penalty factor and kernel width) of LSSVM for increasing its prediction accuracy (GWO-LSSVM). The proposed optimal prediction model is used as a process model in the non-linear model predictive control to predict product concentration. GWO is also used to solve the non-convex optimization problem in non-linear model predictive control (GWO-NMPC) for calculating optimal future inputs. The proposed GWO-based prediction model (GWO-LSSVM) and non-linear model predictive control (GWO-NMPC) are compared with the Particle Swarm Optimization (PSO)-based prediction model (PSO-LSSVM) and non-linear model predictive control (PSO-NMPC) to validate their effectiveness. The comparative results show that the prediction accuracy, adaptability, real-time tracking ability, overall error and control precision of GWO-based predictive control is better compared to PSO-based predictive control.
The l -lysine fermentation process is a complex, nonlinear, dynamic biochemical reaction process with multiple inputs and multiple outputs. There is a complex nonlinear dynamic relationship between each state variable. Some key variables in the fermentation process that directly reflect the quality of the fermentation cannot be measured online in real-time which greatly limits the application of advanced control technology in biochemical processes. This work introduces a hybrid ICS-MLSSVM soft-sensor modeling method to realize the online detection of key biochemical variables (cell concentration, substrate concentration, product concentration) of the l -lysine fermentation process. First of all, a multi-output least squares support vector machine regressor (MLSSVM) model is constructed based on the multi-input and multi-output characteristics of l -lysine fermentation process. Then, important parameters ( , , ) of MLSSVM model are optimized by using the Improved Cuckoo Search (ICS) optimization algorithm. In the end, the hybrid ICS-MLSSVM soft-sensor model is developed by using optimized model parameter values, and the key biochemical variables of the l -lysine fermentation process are realized online. The simulation results confirm that the proposed regression model can accurately predict the key biochemical variables. Furthermore, the hybrid ICS-MLSSVM soft-sensor model is better than the MLSSVM soft-sensor model based on standard CS (CS-MLSSVM), particle swarm optimization (PSO) algorithm (PSO-MLSSVM) and genetic algorithm (GA-MLSSVM) in prediction accuracy and adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.