BackgroundSubstantial global progress in the control of malaria in recent years has led to increased commitment to its potential elimination. Whether this is possible in high transmission areas of sub-Saharan Africa remains unclear. Zanzibar represents a unique case study of such attempt, where modern tools and strategies for malaria treatment and vector control have been deployed since 2003.MethodsWe have studied temporal trends of comprehensive malariometric indices in two districts with over 100,000 inhabitants each. The analyses included triangulation of data from annual community-based cross-sectional surveys, health management information systems, vital registry and entomological sentinel surveys.ResultsThe interventions, with sustained high-community uptake, were temporally associated with a major malaria decline, most pronounced between 2004 and 2007 and followed by a sustained state of low transmission. In 2015, the Plasmodium falciparum community prevalence of 0.43% (95% CI 0.23–0.73) by microscopy or rapid diagnostic test represented 96% reduction compared with that in 2003. The P. falciparum and P. malariae prevalence by PCR was 1.8% (95% CI 1.3–2.3), and the annual P. falciparum incidence was estimated to 8 infections including 2.8 clinical episodes per 1000 inhabitants. The total parasite load decreased over 1000-fold (99.9%) between 2003 and 2015. The incidence of symptomatic malaria at health facilities decreased by 94% with a trend towards relatively higher incidence in age groups > 5 years, a more pronounced seasonality and with reported travel history to/from Tanzania mainland as a higher risk factor. All-cause mortality among children < 5 years decreased by 72% between 2002 and 2007 mainly following the introduction of artemisinin-based combination therapies whereas the main reduction in malaria incidence followed upon the vector control interventions from 2006. Human biting rates decreased by 98% with a major shift towards outdoor biting by Anopheles arabiensis.ConclusionsZanzibar provides new evidence of the feasibility of reaching uniquely significant and sustainable malaria reduction (pre-elimination) in a previously high endemic region in sub-Saharan Africa. The data highlight constraints of optimistic prognostic modelling studies. New challenges, mainly with outdoor transmission, a large asymptomatic parasite reservoir and imported infections, require novel tools and reoriented strategies to prevent a rebound effect and achieve elimination.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1243-z) contains supplementary material, which is available to authorized users.
BackgroundThe emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays.MethodsWHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays.ResultsPyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the kdr target-site mutations, associated with pyrethroid/DDT resistance in An. gambiae elsewhere in Africa, were found on the islands.ConclusionThe consequences of this resistance phenotype are discussed in relation to future vector control strategies on Zanzibar to support the ongoing malaria elimination efforts on the islands.
BackgroundLong-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island.MethodsMosquitoes were sampled from Pemba and Unguja islands in 2010–2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content.ResultsSpecies identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001).ConclusionThe sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures.
Background Zanzibar has maintained malaria prevalence below 1% for the past decade, yet elimination remains elusive despite high coverage of core vector control interventions. As part of a study investigating the magnitude and drivers of residual transmission in Zanzibar, qualitative methods were utilized to better understand night time activities and sleeping patterns, individual and community-level risk perceptions, and malaria prevention practices. Methods A total of 62 in-depth interviews were conducted with community members and local leaders across six sites on Unguja Island, Zanzibar. Twenty semi-structured community observations of night-time activities and special events were conducted to complement interview findings. Data were transcribed verbatim, coded, and analysed using a thematic approach. Results Participants reported high levels of ITN use, but noted gaps in protection, particularly when outdoors or away from home. Routine household and community activities were common in evenings before bed and early mornings, while livelihood activities and special events lasted all or most of the night. Gender variation was reported, with men routinely spending more time away from home than women and children. Outdoor sleeping was reported during special events, such as weddings, funerals, and religious ceremonies. Participants described having difficulty preventing mosquito bites while outdoors, travelling, or away from home, and perceived higher risk of malaria infection during these times. Travel and migration emerged as a crucial issue and participants viewed seasonal workers coming from mainland Tanzania as more likely to have a malaria infection and less likely to be connected to prevention and treatment services in Zanzibar. Some community leaders reported taking the initiative to register seasonal workers coming into their community and linking them to testing and treatment services. Conclusions Targeting malaria interventions effectively is critical and should be informed by a clear understanding of relevant human behaviour. These findings highlight malaria prevention gaps in Zanzibar, and the importance of identifying new approaches to complement current interventions and accelerate the final phases of malaria elimination. Development and deployment of complementary interventions should consider human behaviour, including gender norms, that can influence exposure to malaria vectors and prevention practices. Expansion of community-level programmes targeting travellers and seasonal workers should also be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.