Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation-emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 mM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 mM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 mM C) compared with the epilimnion (107 ± 15 mM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/ 446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acidlike and protein-like substances.
Nanming River, the largest urban river in Guizhou Province, southwestern China plateau, has been severely polluted for decades. This study characterizes the organic materials and their sources in the upstream and downstream waters by dissolved organic carbon (DOC), excitation emission matrix (EEM) spectroscopy, parallel factor (PARAFAC) analysis and photo-microbial experiments. DOC concentrations were low (47-120 lM C) upstream and relatively high (146-462 lM C) downstream. The PARAFAC studies on the sample EEM spectra demonstrated that the upstream dissolved organic matter (DOM) was mostly composed of one component that had a fulvic acid-like substance; downstream DOM was composed of two components with mixtures of tryptophan-like and fulvic acid-like substances. From the results of the sewerage drainage samples collected along the bank of the river, it is evident that both household detergent-like and protein-like or tryptophan-like substances are predominantly present, indicating that untreated sewerage effluents are the major sources of organic matter pollution in Nanming River. The degradation experiments conducted on river, sewerage drainage and commercial detergent samples demonstrated that the detergent-like and tryptophan-like substances are both photochemically and microbiologically more decomposable than fulvic acid-like materials under sunlight and dark incubations. These results suggest that the input of the untreated sewerage effluents along the streams is the major pollution source in Nanming River, and the fluorescent DOM was efficiently affected by both photochemical and microbial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.