We provide evidence both for and against a conjectural analogy between geometrically finite infinite covolume Fuchsian groups and the mapping class group of compact non-orientable surfaces. In the positive direction, we show the complement of the limit set is open and dense. Moreover, we show that the limit set of the mapping class group contains the set of uniquely ergodic foliations and is contained in the set of all projective measured foliations not containing any one-sided leaves, establishing large parts of a conjecture of Gendulphe. In the negative direction, we show that a conjectured convex core is not even quasi-convex, in contrast with the geometrically finite setting.
We prove that in the non-orientable setting, the minimal stretch factor of a pseudo-Anosov homeomorphism of a surface of genus g with a fixed number of punctures is asymptotically on the order of 1 g . Our result adapts the work of Yazdi to non-orientable surfaces. We include the details of Thurston's theory of fibered faces for non-orientable 3-manifolds.
We provide evidence both for and against a conjectural analogy between geometrically finite infinite covolume Fuchsian groups and the mapping class group of compact non-orientable surfaces. In the positive direction, we show the complement of the limit set is open and dense. Moreover, we show that the limit set of the mapping class group contains the set of uniquely ergodic foliations and is contained in the set of all projective measured foliations not containing any one-sided leaves, establishing large parts of a conjecture of Gendulphe. In the negative direction, we show that a conjectured convex core is not even quasi-convex, in contrast with the geometrically finite setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.