Recent improvement in genomic research is paving the way towards significant progress in diagnosis and treatment of diseases. A disease risk query returns the probability of a patient to develop a particular disease based on her genomic and clinical data. Despite various innovative prospects, frequent and ubiquitous usage of genomic data in medical tests and personalized medicine may cause various privacy threats like genetic discrimination, exposure of susceptibility to diseases, and revelation of genomic data of relatives. Another major concern is on ensuring the reliability of the genome data and the correctness of the computed disease risk, which is known as authentication. We develop a novel secret sharing approach to protect privacy of sensitive genomic and clinical data, disease markers, disease name, and the query answer while ensuring authenticated result of the disease risk query. In addition, we discuss the applicability of our approach in the field of personalized medicine. We perform a comprehensive security analysis for our system. Experiments with real datasets show that our approach for authenticated disease risk queries achieves a high level of privacy with reduced processing and storage overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.