With recent advancements in graph neural networks (GNN), GNN-based recommender systems (gRS) have achieved remarkable success in the past few years. Despite this success, existing research reveals that gRSs are still vulnerable to
poison attacks
, in which the attackers inject fake data to manipulate recommendation results as they desire. This might be due to the fact that existing poison attacks (and countermeasures) are either model-agnostic or specifically designed for traditional recommender algorithms (e.g., neighbourhood-based, matrix-factorisation-based, or deep-learning-based RSs) that are not gRS. As gRSs are widely adopted in the industry, the problem of how to design poison attacks for gRSs has become a need for robust user experience. Herein, we focus on the use of poison attacks to manipulate item promotion in gRSs. Compared to standard GNNs, attacking gRSs is more challenging due to the heterogeneity of network structure and the entanglement between users and items. To overcome such challenges, we propose
GSPAttack
– a generative surrogate-based poison attack framework for gRSs.
GSPAttack
tailors a learning process to surrogate a recommendation model as well as generate fake users and user-item interactions while preserving the data correlation between users and items for recommendation accuracy. Although maintaining high accuracy for other items rather than the target item seems counterintuitive, it is equally crucial to the success of a poison attack. Extensive evaluations on four real-world datasets revealed that
GSPAttack
outperforms all baselines with competent recommendation performance and is resistant to various countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.