Halogen bonds involving an aromatic moiety as an acceptor, otherwise known as R-X…π interactions, have increasingly been recognized as being important in materials and in protein-ligand complexes. These types of interactions have been the subject of many recent investigations, but little is known about the ways in which the strengths of R-X…π interactions vary as a function of the relative geometries of the interacting pairs. Here we use the accurate CCSD(T) and SAPT2+3δMP2 methods to investigate the potential energy landscapes for systems of HBr, HCCBr, and NCBr complexed with benzene. It is found that only the separation between the complexed molecules have a strong effect on interaction strength while other geometric parameters, such as tilting and shifting R-Br…π donor relative to the benzene plane, affect these interactions only mildly. Importantly, it is found that the C6v (T-shaped) configuration is not the global minimum for any of the dimers investigated.
Halogen bonds involving cationic halogen bond donors and anionic halogen bond acceptors have recently been recognized as being important in stabilizing the crystal structures of many salts. Theoretical characterization of these types of interactions, most importantly in terms of their directionality, has been limited. Here we generate high-quality symmetry adapted perturbation theory potential energy curves of a H3N-C≡C-Br+…Cl− model system in order to characterize halogen bonds involving charged species, in terms of contributions from electrostatics, exchange, induction, and dispersion, with special emphasis on analyzing contributions that are most responsible for the directionality of these interactions. It is found that, as in the case of neutral halogen bonds, exchange forces are important contributors to the directionality of charged halogen bonds, however, it is also found that induction effects, which contribute little to the stability and directionality of neutral halogen bonds, play a large role in the directionality of halogen bonds involving charged species. Potential energy curves based on the ωB97X-D/def2-TZVP/C-PCM method, which includes an implicit solvation model in order to mimic the effects of the crystal medium, are produced for both the H3N-C≡C-Br+…Cl− model system and for the 4-bromoanilinium…Cl− dimer, which is based on the real 4-bromoanilinium chloride salt, whose crystal structure has been determined experimentally. It is found that, within a crystal-like medium, charged halogen bond are significantly weaker than in the gas phase, having optimum interaction energies up to approximately −20 kcal/mol.
Abstract:Here, we investigate the strengths of R-X···π interactions, involving both chlorine and bromine, in model systems derived from protein-ligand complexes found in the PDB. We find that the strengths of these interactions can vary significantly, with binding energies ranging from −2.01 to −3.60 kcal/mol. Symmetry adapted perturbation theory (SAPT) analysis shows that, as would be expected, dispersion plays the largest role in stabilizing these R-X···π interactions, generally accounting for about 50% to 80% of attraction. R-Br···π interactions are, for the most part, found to be stronger than R-Cl···π interactions, although the relative geometries of the interacting pair and the halogen's chemical environment can also have a strong impact. The two factors that have the strongest impact on the strength of these R-X···π interactions is the distance between the halogen and the phenyl plane as well as the size of the halogen σ-hole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.