The requirement of vitamin A for the synthesis of the visual chromophore and the light-sensing pigments has been studied in vertebrate and invertebrate model organisms. To identify the molecular mechanisms that orchestrate the ocular response to vitamin A deprivation, we took advantage of the fact that Drosophila melanogaster predominantly requires vitamin A for vision, but not for development or survival. We analyzed the impacts of vitamin A deficiency on the morphology, the lipidome, and the proteome of the Drosophila eye. We found that chronic vitamin A deprivation damaged the light-sensing compartments and caused a dramatic loss of visual pigments, but also decreased the molar abundance of most phototransduction proteins that amplify and transduce the visual signal. Unexpectedly, vitamin A deficiency also decreased the abundances of specific subunits of mitochondrial TCA cycle and respiratory chain components but increased the levels of cuticle- and lens-related proteins. In contrast, we found no apparent effects of vitamin A deficiency on the ocular lipidome. In summary, chronic vitamin A deficiency decreases the levels of most components of the visual signaling pathway, but also affects molecular pathways that are not vision-specific and whose mechanistic connection to vitamin A remains to be elucidated.
Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.
Insufficient dietary intake of vitamin A causes various human diseases. For instance, chronic vitamin A deprivation causes blindness, slow growth, impaired immunity, and an increased risk of mortality in children. In contrast to these diverse effects of vitamin A deficiency in mammals, chronic vitamin A deficiency in flies neither causes obvious developmental defects nor lethality. As in mammals, vitamin A deficiency in flies severely affects the visual system: it impairs the synthesis of the retinal chromophore, disrupts the formation of the visual pigments (Rhodopsins), and damages the photoreceptors. However, the molecular mechanisms that respond to vitamin A deficiency remain poorly understood. To identify genes and signaling pathways that are affected by vitamin A deficiency, we performed RNA-sequencing and differential gene expression analysis in Drosophila melanogaster. We found an upregulation of genes that are essential for the synthesis of the retinal chromophore, specific aminoacyl-tRNA synthetases, and major nutrient reservoir proteins. We also discovered that vitamin A deficiency affects several genes that are required for the termination of the light response: for instance, we found a downregulation of both arrestin genes that are essential for the inactivation of Rhodopsin. A comparison of the vitamin A deficiency-responsive genes with previously identified blue light stress-responsive genes revealed that the two types of environmental stress trigger largely nonoverlapping transcriptome responses. Yet, both stresses increase the expression of seven genes with poorly understood functions. Taken together, our transcriptome analysis offers insights into the molecular mechanisms that respond to environmental stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.