Sample filling and discretization within thermoplastic 2D microwell arrays is investigated toward the development of low cost disposable microfluidics for passive sample discretization. By using a high level of contact angle asymmetry between the filling channel and microwell surfaces, a significant increase in the range of well geometries that can be successfully filled is revealed. The performance of various array designs is characterized numerically and experimentally to assess the impact of contact angle asymmetry and device geometry on sample filling and discretization, resulting in guidelines to ensure robust microwell filling and sample isolation over a wide range of well dimensions. Using the developed design rules, reliable and bubble-free sample filling and discretization is achieved in designs with critical dimensions ranging from 20 μm to 800 μm. The resulting devices are demonstrated for discretized nucleic acid amplification by performing loop-mediated isothermal amplification for the detection of the mecA gene associated with methicillin-resistant Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.