Fully densified Al 2 O 3 ceramics with fine grain size were obtained by pulsed electric current sintering through a two-step heating profile (referred to as TS-PECS). Highly transparent Al 2 O 3 polycrystals with fine grain size (400 nm) were successfully fabricated by the TS-PECS process, namely, sintering at 1000uC for 1 h and followed at 1200uC for 20 min under uniaxial pressure of 100 MPa. Effects of the first step temperature and heating rate were discussed for bulk density, grain size and transparency. The temperature in the first step strongly affects densification and grain growth of Al 2 O 3 . On the other hand, heating rate, even of 100 K min 21 , in TS-PECS does not give significant influences on densification and grain growth of Al 2 O 3 . Inline transmittance at 640 nm in wavelength normalised to 1 mm in thickness is increased by decreasing heating rate even in TS-PECS.
Densification and sample temperature of alumina (Al2O3) powder during pulsed electric current sintering with different pulse power generators, inverter type and pulsed direct current type were investigated. The sample temperature for inverter generator was higher than that for pulsed direct current generator in same die temperature ranging form 800 to 1400oC. The relative density increased with increasing of the sample temperature.
This paper reports the synthesis of a new printable ABS–MWCNT composite filament, for use in fused deposition modeling (FDM), using an extrusion technique. Acrylonitrile butadiene styrene (ABS) and multi-walled carbon nanotubes (MWCNTs) were the initial materials used for fabricating the filaments. The MWCNTs were dispersed in ABS resin, then extruded through a single-shaft extruder in filament form, with MWCNT contents of 0.5%, 1%, 1.5%, 2%, 3% or 4% by weight. After extrusion, the diameter of the filaments was about 1.75 mm, making them appropriate for FDM. The as-synthesized filaments were then used in FDM to print out samples, on which tensile tests and other analyses were carried out. The results demonstrate that the sample with 2% MWCNTs had the highest strength value, 44.57 MPa, comprising a 42% increase over that of the pure ABS sample. The morphology and dispersion of MWCNTs in the composite were observed by field emission scanning electron microscopy (FESEM), demonstrating the uniform distribution of MWCNTs in the ABS matrix. The thermal behavior results indicated no significant change in the ABS structure; however, the melt flow index of the filaments decreased with an increase in the MWCNT content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.