<span lang="EN-US">A phosphor-converted light-emitting diode (LED) solar simulator is an illuminance device that produced irradiance intensity and spectral close to the sunlight. It is determined as spectral mismatch, non-uniformity of irradiance, and temporal instability. This paper has improved the LED solar simulator (LSS) system to have a spectral distribution consistent with the AM1.5G spectrum at 100%. It was developed as a new prototype to have the AAA class spectral characteristics, time instability, and inconsistency according to IEC 60904-9. The results showed that an optimal approach was to use phosphor-converted natural white LED (pc-nWLED), combining a monochromatic near-infrared (NIR) (730, 800, 850, 940, and 1,000 nm) as well as the proposed LSS system capable of generating 1,000 W/m<sup>2</sup> irradiation over the test plane of 125×125 mm and operated continuously in a constant temperature LED state for at least 2 hours, therefore suitable for demonstration of solar cell features under standard test condition (STC) in the laboratory.</span>
Low-level light therapy (LLLT) uses the light of wavelength between 400–700 nm to treat acne, reduce inflammation, stimulate collagen production, and rejuvenate the facial skin. This study designed and constructed a dual-wavelength LED LLLT device for the facial treatment. The light spectrum, power density, uniformity, stability, and safety of the device were analyzed. The proposed system consisted of an LED array with 415 and 633 nm wavelengths. Human machine interface with embedded system was used to control light intensity and treatment time. The phototherapy device is designed to be curvaceously sized to suit the face shape of Asian people. The results showed that the LLLT device emitted 633±5 nm red and 415±5 nm blue light with a linear adjustable light power density of 0-18.56 mW/cm<sup>2</sup> and 0-3.70 mW/cm<sup>2</sup>, respectively. The spectrum distribution of the red and blue light was relatively constant over 30 minutes of operation. The uniformity and stability of red spectrum were about 89.9% and 95.08% and blue spectrum were 87.6% and 97.08%, respectively. The experimental face’s temperature was below 31.5 . For the future study, the LED phototherapy device will be applied for clinical research in collaboration with dermatologists.Low-level light therapy (LLLT) uses the light of wavelength between 400–700 nm to treat acne, reduce inflammation, stimulate collagen production, and rejuvenate the facial skin. This study designed and constructed a dual-wavelength LED LLLT device for the facial treatment. The light spectrum, power density, uniformity, stability, and safety of the device were analyzed. The proposed system consisted of an LED array with 415 and 633 nm wavelengths. Human machine interface with embedded system was used to control light intensity and treatment time. The phototherapy device is designed to be curvaceously sized to suit the face shape of Asian people. The results showed that the LLLT device emitted 633±5 nm red and 415±5 nm blue light with a linear adjustable light power density of 0-18.56 mW/cm<sup>2</sup> and 0-3.70 mW/cm<sup>2</sup>, respectively. The spectrum distribution of the red and blue light was relatively constant over 30 minutes of operation. The uniformity and stability of red spectrum were about 89.9% and 95.08% and blue spectrum were 87.6% and 97.08%, respectively. The experimental face’s temperature was below 31.5 . For the future study, the LED phototherapy device will be applied for clinical research in collaboration with dermatologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.