Facial expressions, usually has an adverse effect on the performance of a face recognition system. In this investigation, expression invariant face recognition algorithm is presented that converts input face image with an arbitrary expression into its corresponding neutral facial image. In the present study, deep learning algorithm is used to train classifiers for reference keypoints, where key-points are located and deep neural network is trained to make the system able to locate the landmarks in test image. Create an intermediate triangular mesh from the test and reference image and then warp it using affine transform and take the average of the normalized faces. To extract the features presented in the result image shift invariant feature extraction technique is used. Finally, results are compared and the recognition accuracy is determined for different expressions. The present work is tested on three different databases: JAFFE, Cohn-Kanade (CK) and Yale database. Experimental results show that the expression invariant face recognition method is very robust to variety of expressions and recognition accuracy is found to be 97.8 %, 96.8% and 95.7% for CK, JAFFE and Yale databases respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.