The temporal analysis of land surface temperature (LST) has generally been studied using data from the same season, as temperature varies greatly over time. However, the cloud cover in thermal remotely sensed images and the coarse resolution of passive sensor system significantly limits data availability of same season for comparative temporal analysis in many parts of the world. To address this problem, we propose a new method for temporal monitoring of surface temperature based on LST normalization (LSTn); deploying the average open water temperature to normalize LST when monitoring temporal change in the surface temperature of newly coastal reclaimed areas. This method was applied in the Lingding Bay area, Guangdong Province, Southern China. Original LST and LSTn values were calculated for years 1987, 1997, 2007, and 2017. In contrast to the original LST, results show that LSTn can reduce seasonal variability when monitoring temporal change in surface temperatures. Additionally, LSTn revealed pronounced differences between the temperature of impervious surfaces and other land cover types. This method offers more robust detection of surface urban heat islands than original LST in newly developed coastal areas.
Rapid urbanization influences green infrastructure (GI) development in cities. The government plans to optimize GI in urban areas, which requires understanding GI spatiotemporal trends in urban areas and driving forces influencing their pattern. Traditional GIS-based methods, used to determine the greening potential of vacant land in urban areas, are incapable of predicting future scenarios based on the past trend. Therefore, we propose a heterogeneous ensemble technique to determine the spatial pattern of GI development in Jinan, China, based on driving biophysical and socioeconomic factors. Data-driven artificial neural networks (ANN) and random forests (RF) are selected as base learners, while support vector machine (SVM) is used as a meta classifier. Results showed that the stacking model ANN-RF-SVM achieved the best test accuracy (AUC 0.941) compared to the individual ANN, RF, and SVM algorithms. Land surface temperature, distance to water bodies, population density, and rainfall are found to be the most influencing factors regarding vacant land conversion to GI in Jinan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.