Alzheimer's disease (AD), a neurodegenerative disorder, is a very serious illness that cannot be cured, but the early diagnosis allows precautionary measures to be taken. The current used methods to detect Alzheimer's disease are based on tests of cognitive impairment, which does not provide an exact diagnosis before the patient passes a moderate stage of AD. In this article, a novel classifier of brain magnetic resonance images (MRI) based on the new downsized kernel principal component analysis (DKPCA) and multiclass support vector machine (SVM) is proposed. The suggested scheme classifies AD MRIs. First, a multiobjective optimization technique is used to determine the optimal parameter of the kernel function in order to ensure good classification results and to minimize the number of retained principle components simultaneously. The optimal parameter is used to build the optimized DKPCA model. Second, DKPCA is applied to normalized features. Downsized features are then fed to the classifier to output the prediction. To validate the effectiveness of the proposed method, DKPCA was tested using synthetic data to demonstrate its efficiency on dimensionality reduction, then the DKPCA based technique was tested on the OASIS MRI database and the results were satisfactory compared to conventional approaches.
Process monitoring is an integral part of chemical process, required higher product quality and safety operation. Therefore, the objective of this paper is to ensure the suitable functioning and to improve the fault detection performance of conventional kernel Principal Components Analysis (KPCA). Thus, an online Reduced Rank KPCA (OnRR-KPCA) with adaptive model has been developed to monitor a dynamic nonlinear process. The developed method is proposed. Firstly, to extract the useful observations, from large amount of training data registered in normal operating conditions, in order to construct the reduced reference model. Secondly, to monitor the process online and update the reference model if a new useful observation is available and satisfies the condition of independencies between variables in feature space. To demonstrate the effectiveness of the OnRR-KPCA with adaptive model over the conventional KPCA and the RR-KPCA, the fault detection performances are illustrated through two examples: one using synthetic data, the second using a simulated Tennessee Eastman Process (TEP) data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.