Due to their toxicity, long persistence, bioaccumulative nature, and biomagnification in the food chain, heavy metals pose a serious hazard. The aim of this study was to evaluate the health risks associated with the consumption of Sardina pilchardus (Walbaum, 1792) and to study the spatiotemporal dynamics of four potentially toxic metallic elements. Three hundred and sixty specimens of sardine were collected between December 2020 and October 2021 at three Mediterranean coast sites, Beni-Ensar, Ras el Ma, and El-Houceima, in the northeast region of Morocco. The toxic metallic elements were evaluated by assessing the contamination level of cadmium (Cd), mercury (Hg), lead (Pb), and arsenic (As) in the muscle, liver, and gills of sardine from the Mediterranean Moroccan coast. The results showed a significant effect of the study area, organ, and season ( p > 0.05 ) on Moroccan Mediterranean sardine heavy metal contamination levels. Regardless the location and season, the liver presents the higher concentration of the studied metals ( p < 0.05 ). The highest heavy metal concentrations of Cd (0.408 μg·g−1 wet weight (ww)), Hg (0.044 μg·g−1 ww), and As (6.74 μg·g−1 ww) were found in winter while the concentration of Pb was the highest in autumn (0.056 μg·g−1 ww). Furthermore, the lowest contamination of metal levels was found in the spring. El-Houceima region contains the highest values for Hg (0.093 μg·g−1 ww), Pb (0.018 μg·g−1 ww), and As (7.73 μg·g−1 ww). However, the highest values for Cd (0.172 μg·g−1 ww) were recorded in Beni-Ensar. Regarding the assessment of possible risks to human health, the results showed that the indices are below the established safety values in the case of estimated weekly intake, and target hazard quotient (THQ). In contrast, the carcinogenic risk index and total THQ were above the threshold limits and thus represented a potential carcinogenic risk to human health.
Water is a vital natural resource for life. The metal pollution of aquatic ecosystems is increasing due to the effects of urbanization and industrialization. As a result, heavy metals contamination has become a serious threat to public health because of their toxicity, long persistence, bioaccumulation, and biomagnification in the food chain. This investigation aims to evaluate seawater's Physico-chemical quality and assess the contamination risks of Mytilus galloprovincialis mussels by Cadmium, Zinc, Iron, and Copper. The study was carried out in three stations of Saidia coast during July 2019. The seawater was analyzed for its Physico-chemical parameters, and ICP-AES determined the heavy metals content in mussels. The results show that the tested water has a pH value ranging between 7.48-7.62 with nitrate and nitrite content range between 0-4.78 mg/L, 0.007-0.181 mg/L, respectively. The recorded water conductivity and oxydability values ranged from 22 to 55 mS/cm and from 5.67 to 10.47 mg/L. The mean concentration found in the mussels were in decreasing order, Iron (13.5 mg/kg), Zinc (2.3 mg/kg), Copper (0.65 mg/kg) and Cadmium (0.02 mg/kg), respectively. The obtained results indicate that all values are below the threshold recommended by Food and agriculture organization and world health organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.