A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a Vortex Trapping Cavity (VTC) on the aerodynamics of the National renewable Energy laboratory (NREL) Phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Secondly, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec=106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favourably reshapes excessive flow separation, reenergizes the boundary layer and globally improves blade torque.
For the rotor, achieving relatively high aerodynamic performance in specific wind conditions is a long-term goal. Inspired by the remarkable flight characteristics of owls, an optimal trailing edge serration design is investigated and proposed for a wind turbine rotor blade. Fluid flow interaction with the proposed serrations is explored for different wind conditions. The result is supported by subsequent validation with three-dimensional numerical tools. The present work employs a statistical-numerical method to predict and optimize the shape of the serrations for maximum aerodynamic improvement. The optimal combination is found using the Taguchi method with three factors: Amplitude, wavelength, and serration thickness. The viability of the solution on an application is assessed using the Weibull distribution of wind in three selected regions. Results show that the presence of serration is capable of improving the annual power generation in all the investigated cities by up to 12%. The rated speed is also shifted from 10 m/s to 8 m/s for most configurations. Additionally, all configurations show similar trends for the instantaneous torque, where an increase is observed in pre-rated speed, whereas a decrease is noticed in the post-rated speed region. A look at the flow field pattern for the optimal design in comparison with the clean blade shows that the modified blade is able to generate more lift in the pre-stall region, while for the post-stall region, early separation and increased wake dominate the flow.
Numerical modelling and simulation of a rotating, tapered, and twisted three-dimensional blade with turbulent inflow conditions and separating flows is a challenging case in Computational Fluid Dynamics (CFD). The numerical simulation of the fluid flow behaviour over a wind turbine blade is important for the design of efficient machines. This paper presents a numerical validation study using the experimental data collected by the National Renewable Energy Laboratory (NREL). All the simulations are performed on the sequence S of the extensive experimental sequences conducted at the NASA/Ames wind tunnel with constant RPM and variable wind speeds. The results show close agreement with the NREL UAE experimental data. The CFD model captures closely the totality of the defining quantities. The shaft torque is well-predicted pre-stall but under-predicted in the stall region. The three-dimensional flow and stall are well captured and demonstrated in this paper. Results show attached flow in the pre-stall region. The separation appears at a wind speed of 10 m/s near the blade root. For V>10m/s, the blade appears to experience a deep stall from root to tip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.