An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime; using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of () O N , its truncation error goes like () 2 O h , and it is more precise and faster than the Thomas algorithm.
A new and innovative method for solving the 1D Poisson Equation is presented, using the finite differences method, with Robin Boundary conditions. The exact formula of the inverse of the discretization matrix is determined. This is the first time that this famous matrix is inverted explicitly, without using the right hand side. Thus, the solution is determined in a direct, very accurate (O(h 2 )), and very fast (O(N)) manner. This new approach treats all cases of boundary conditions: Dirichlet, Neumann, and mixed. Therefore, it can serve as a reference for solving the Poisson equation in one dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.