Kelp (brown algae in the order Laminariales ) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems.
Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins.
Disturbance impacts the spatial distribution of primary producers, which can have cascading effects on ecosystem function. The lower-intertidal zone on the rocky shores of the Pacific Northwest is one such place where wave energy creates a mosaic-like distribution between two assemblages: surfgrass (Phyllospadix scouleri) meadows and macroalgal forests dominated by kelp. We simulated wave disturbance by experimentally removing patches of surfgrass monocultures, resulting in a macroalgal assemblage with increased diversity, biomass, and net primary productivity in the following year.While surfgrass had a higher C:N compared to macroalgal assemblages, macroalgal assemblages achieved a higher biomass, fixed carbon at a faster rate, and released more dissolved organic carbon (DOC) during photosynthesis. Thus, despite similar standing amounts of carbon, macroalgal assemblages have increased carbon turnover -from fixation to DOC release. Comparative photophysiology indicated that surfgrasses have a competitive advantage over other macrophytes at low-light levels, allowing them to persist when disturbance is reduced. Unexpectedly, disturbance in this system increased the potential for carbon sequestration when surfgrass monocultures were replaced by diverse macroalgae.
Coastal marine phototrophs exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their phototroph hosts through metabolisms that are unique to microbial taxa. Here we characterized the metabolic functions of phototroph-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.) and the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 72 metagenome assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic gene content. All host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis. Additionally, we found a range of nitrogen metabolism genes that transform dissolved inorganic nitrogen into forms that may be more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms, and contributes to the functional capabilities of microbes and their influence on carbon and nitrogen cycling in nearshore ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.