This study aimed to assess the relationship between the content of toxic trace elements, such as aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), mercury (Hg), and lead (Pb), in the hair of the adult population of western Kazakhstan and the distance of their residence from oil and gas fields. The cross-sectional study included 850 adults aged 18–60 years. Inductively coupled plasma mass spectrometry was used to measure the level of Al, As, Be, Cd, Hg, and Pb in hair. The relationship between the concentration of toxic trace elements in the hair and the distance from oil and gas fields was assessed in three groups (<16 km, 16–110 km, and >110 km), using multiple linear regression analysis. The highest concentration of Hg = 0.338 μg/g was determined in the group living near oil and gas fields (0–16 km), whereas the lowest concentration of Al = 3.127 μg/g and As = 0.028 μg/g was determined in participants living at a long distance (more than 110 km) (p < 0.001). The concentration of Al (−0.126 (CI: −0.174; −0.077)), Hg (−0.065 (CI: −0.129; −0.001)), and Pb (0.111 (CI: 0.045; 0.177)) is associated with the distance to oil and gas fields. The obtained data indicate a change in the toxic trace element content in the hair of residents in the Caspian region of western Kazakhstan, a change that is most pronounced in residents living in the zone of oil and gas pollution. The distance to the oil and gas fields affects the content of toxic elements in scalp hair. In particular, the concentration of Al and Hg is associated with a decrease in the distance to oil and gas fields, while the concentration of Pb is associated with an increase in the distance to these fields. The lowest content of Al and As was determined in the hair of study participants living in the most remote areas (more than 110 km from oil and gas fields). Our results demonstrate the need for the biomonitoring of toxic elements to determine long-term temporal trends in the impact of chemicals on public health in western Kazakhstan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.