von Willebrand factor (VWF) is the largest multimeric adhesion ligand circulating in blood. Its adhesion activity is related to multimer size, with the ultra-large forms freshly released from the activated endothelial cells being most active, capable of spontaneously binding to platelets. In comparison, smaller plasma forms circulating in blood bind platelets only under high fluid shear stress or induced by modulators. The structure-function relationships that distinguish the two types of VWF multimers are not known. In this study, we demonstrate that some of the plasma VWF multimers contain surface-exposed free thiols. Physiological and pathological levels of shear stresses (50 and 100 dynes/cm 2 ) promote the formation of disulfide bonds utilizing these free thiols. The shear-induced thiol-disulfide exchange increases VWF binding to platelets.
SummaryEndothelial progenitor cells (EPCs) mobilize from the bone marrow in response to tissue injury and participate in vascular repair. However, there is limited data about the homing mechanisms of EPCs to vascular injury sites. Recently animal experiments indicated that platelets playa role in recruitment of EPCs to injury sites. However, data on the possible interaction between platelets and EPCs within the human system are limited. We, therefore, examined in-vitro human platelet-EPC interaction under static and flow conditions. Human EPCs were isolated from donated buffy coats by magnetic microbeads and flow cytometry cell sorting using CD133 and VEGFR-2, respectively, as markers. Platelets were tested in the form of washed platelets, platelet rich plasma or whole blood. EPCs formed heterotypic aggregates with resting platelets under static conditions, an interaction that was greatly enhanced when platelets were activated by collagen, ADP or thrombin-activation peptide. The platelet-EPC interaction was inhibited by antibodies to P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1), but not by antibodies to glycoproteins Ib-IX-V or IIb/IIIa. When perfused over activated platelets under shear stress of 2.5 dyn/cm2, EPCs tethered to platelayers and either adhered immediately or rolled a short distance before adhering. In addition, platelets promoted the colonization of adherent EPCs in culture conditions. Consistent with recent animal studies, these findings demonstrate that human EPCs interact in vitro with activated platelets under static and flow conditions, mediated through P-selectin–PSGL-1 interaction. This interaction may be a central mechanism for homing of EPCs to vascular injury sites.
BackgroundSevere ADAMTS13 deficiency is a critical component of the pathogenesis of idiopathic thrombotic thrombocytopenic purpura but is found only in about 60% of patients clinically diagnosed with this disease. Design and MethodsOver a period of 8 years and six episodes of thrombotic thrombocytopenic purpura we studied the evolution of the anti-ADAMTS13 antibody response in a patient using different ADAMTS13 assays and epitope mapping. ResultsAnti-ADAMTS13 autoantibodies were found in all episodes but were inhibitory only in the last two episodes. In a flow-based assay, normal ADAMTS13 activity was found only during the first disease episode, while ADAMTS13 activity was normal using a static assay in episodes 1 and 3, and severely deficient in the last two episodes. Fluorescence evolution in a modified fluorescence resonance energy transfer assay using a von Willebrand factor A2 domain peptide substrate was linear in episodes 1, 5 and 6, but increased exponentially in episodes 3 and 4. Despite the variable functional characteristics of the anti-ADAMTS13 autoantibodies, their principal epitope was the ADAMTS13 spacer domain in all episodes. ConclusionsThe patient is unique as he displayed features of maturation or shaping of the anti-ADAMTS13 autoantibody response during the course of multiple episodes of thrombotic thrombocytopenic purpura. Anti-ADAMTS13 autoantibodies may be important in vivo despite normal ADAMTS13 activity in routine assays. Consequently, treatment decisions should not be based solely on activity assay results. Haematologica 2012;97(2):297-303. doi:10.3324/haematol.2011 This is an open-access paper.Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocytopenic purpura
Summary Background and Objective Upon stimulation, endothelial cells release von Willebrand factor (VWF) enriched in ultra-large (UL) forms that are rapidly cleaved by ADAMTS-13. The zinc metalloprotease fits in the consensus for members of the ADAMTS family, but also contains two unique C-terminal CUB domains. There are 5 and 2 cysteine residues in the CUB-1 and CUB-2 domains, respectively, instead of four as deducted from the consensus. In this study, we investigated the role of cysteine residues in the CUB-1 domain in ADAMTS-13 synthesis and activity. Methods and Results CUB-1 and cysteine mutations were expressed in mammalian cell lines and examined for synthesis, secretion, stability, and VWF-cleaving activity. When expressed as isolated domain, CUB-1, but not CUB-2, covalently aggregated. Converting any of the four cysteines that fit in the CUB consensus (C1192, C1213, C1236 and C1254) reduced the secretion of the mutants to the conditioned medium, but not to extracellular matrix. The mutations also resulted in a moderate increase in proteolytic degradation and decrease in cleaving plasma VWF under static, but not flowing conditions. In contrast, replacing C1275, which was found to be in the thiol form, with a serine residue prevented covalent aggregation of CUB-1, but had no effect on secretion and VWF-cleaving activity. C1275S is also markedly resistant to proteolytic degradation. Conclusion The data illustrate the importance of consensus cysteines in the secretion and proteolytic activity of ADAMTS-13. They also identify an ADAMTS-13 mutant that is resistant to proteolytic degradation, while maintaining a normal VWF-cleaving activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.